Abstract:
A method of determining, within a radio network, an optimal value of at least one network parameter having an associated performance metric, the network having at least a base station and a user equipment (UE), the method including: providing a mathematical representation function (MRF) for the performance metric such that an optimal value for each of the at least one network parameter provides a result of zero in the MRF; making at least one noisy observation of the MRF from the network; and recursively updating the at least one network parameter based on the at least one noisy observation to obtain the optimal value for each of the at least one network parameter that provides the result of zero in the MRF.
Abstract:
An adjustable filter is responsive to a control signal to change a frequency response of the adjustable filter based on frequency spectrum information. The control signal may shift a center of the pass band from a first center frequency to a second center frequency and/or change a pass band bandwidth from a first bandwidth to a second bandwidth. In one example, the frequency spectrum information includes a status of an internal secondary radio. The frequency spectrum information may also indicate a region of operation where the frequency response is selected in accordance with the region.
Abstract:
Methods, systems, and devices for wireless communication are provided for mobility management for wireless communications systems that utilize a flexible bandwidth carrier. Some embodiments include approaches for determining bandwidth information, such as one or more bandwidth scaling factors N and/or flexible bandwidths, at a user equipment (UE), where the bandwidth information may not be signaled to the UE. Embodiments for determining bandwidth information include: random ordered bandwidth scaling factor approaches, delay ordered bandwidth scaling factor approaches, storing bandwidth scaling factor value in UE Neighbor Record approaches, spectrum measurement approaches, spectrum calculation approaches, and/or a priori approaches. Flexible bandwidth carrier systems may utilize spectrum portions that may not be big enough to fit a normal waveform. Flexible bandwidth carrier systems may be generated through dilating, or scaling down, time, frame lengths, bandwidth, or the chip rate of the flexible bandwidth carrier systems with respect to a normal bandwidth carrier system.
Abstract:
A method of coordinating a small cell with a plurality of small cells includes estimating backhaul bandwidth and backhaul bandwidth utilization of the small cell; estimating aggregate bandwidth utilization for the small cell and the plurality of small cells based on the estimated backhaul bandwidth utilization for each of the small cells; selecting the small cell as a cluster head for a cluster of the small cells based on the estimated aggregate backhaul bandwidth utilization, the cluster including at least some of the small cells; and communicating, via the cluster head, information between a network entity and the small cells of the cluster.
Abstract:
Methods, systems, and devices for mobility management for wireless communications systems that utilize a flexible bandwidth carrier are provided. Some embodiments include determining and transmitting assistance information to one or more user equipment (UEs) to facilitate mobility management with respect to the flexible bandwidth carrier. Some embodiments include signaling flexible bandwidth carrier information to UEs including, but not limited to: UE-centric approaches, network-centric approaches, network-centric approaches with PLMN, SIB creation approaches, and/or application layer approaches. A flexible bandwidth carrier may involve a wireless communications system that may utilize portions of spectrum that may not fit a normal bandwidth. A flexible bandwidth carrier may be generated with respect to a normal bandwidth carrier through dilating, or scaling down, the time or the chip rate of the flexible bandwidth carrier with respect to the normal bandwidth carrier. Some embodiments may expand a bandwidth for a flexible bandwidth carrier.
Abstract:
Aspects of the disclosure are directed to interference cancellation. A method of performing interference cancellation in a wireless communications device having a transmitter, a receiver, a coefficient controller and an analog interference cancellation (AIC) circuit includes utilizing the receiver for receiving a signal, wherein the received signal includes an interference signal within a spectral region; measuring the received signal to obtain a measurement of the interference signal within a guard region of the spectral region; and determining a set of coefficients based on the measurement of the interference signal within the guard region.
Abstract:
A user equipment (UE) may communicate over a first wireless wide area network (WWAN). The first WWAN may be supported by a first subscriber identity module (SIM) of the UE. The UE may also communicate simultaneously over a second WWAN supported by a second SIM. The UE may process the second WWAN communication with a portion of a WWAN module and a portion of a wireless local area network (WLAN) module.
Abstract:
A user equipment (UE) may communicate over a first wireless wide area network (WWAN). The first WWAN may be supported by a first subscriber identity module (SIM) of the UE. The UE may also communicate simultaneously over a second WWAN supported by a second SIM. The UE may process the second WWAN communication with a portion of a WWAN module and a portion of a wireless local area network (WLAN) module.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus provides or enables dynamic cooperative wireless data delivery service based on dynamic proximate locations of mobile nodes in wireless networks. A source wireless terminal may offload data for delayed transmission by a neighboring wireless terminal. The source may attempt delayed data transmission via any cooperating neighboring node (mule), whether mobile or stationary. A utility function may be used to compare costs of communicating via direct links or through opportunistically available links provided by mules. The mule may advertise availability of indirect data delivery service including probable latency time associated with the indirect delivery service.
Abstract:
Methods, systems, and devices are provided for system information management in a wireless communications. A user equipment (UE) may identify a first value of a value tag in a first carrier, read a system information block (SIB) on the first carrier associated with the value tag, and identify a second value of the value tag in a second carrier. The UE may compare the first value with the second value and determine whether the read SIB on the first carrier may be utilized on the second carrier. Other techniques may include identifying a first value of a value tag for a first carrier linked with a SIB transmitted over the first carrier. The techniques may include determining a second value of the value tag for a second carrier indicating whether the SIB transmitted over the first carrier may be utilized on the second carrier.