Abstract:
Tunable diplexers in three-dimensional (3D) integrated circuits (IC) (3DIC) are disclosed. In one embodiment, the tunable diplexer may be formed by providing one of either a varactor or a variable inductor in the diplexer. The variable nature of the varactor or the variable inductor allows a notch in the diplexer to be tuned so as to select a band stop to eliminate harmonics at a desired frequency as well as control the cutoff frequency of the pass band. By stacking the elements of the diplexer into three dimensions, space is conserved and a variety of varactors and inductors are able to be used.
Abstract:
A particular device includes a substrate and a spiral inductor coupled to the substrate. The spiral inductor includes a first conductive spiral and a second conductive spiral overlaying the first conductive spiral. A first portion of an innermost turn of the spiral inductor has a first thickness in a direction perpendicular to the substrate. The first portion of the innermost turn includes a first portion of the first conductive spiral and does not include the second conductive spiral. A second portion of the innermost turn includes a first portion of the second conductive spiral. A portion of an outermost turn of the spiral inductor has a second thickness in the direction perpendicular to the substrate that is greater than the first thickness. A portion of the outermost turn includes a second portion of the first conductive spiral and a second portion of the second conductive spiral.
Abstract:
Tunable diplexers in three-dimensional (3D) integrated circuits (IC) (3DIC) are disclosed. In one embodiment, the tunable diplexer may be formed by providing one of either a varactor or a variable inductor in the diplexer. The variable nature of the varactor or the variable inductor allows a notch in the diplexer to be tuned so as to select a band stop to eliminate harmonics at a desired frequency as well as control the cutoff frequency of the pass band. By stacking the elements of the diplexer into three dimensions, space is conserved and a variety of varactors and inductors are able to be used.
Abstract:
Certain aspects of the present disclosure propose a method and an apparatus for antenna tuning and transmit path selection in an RF system. A method may include antenna diversity path selection by (optionally) diagnosing damaged antennas, tuning antennas, and selecting an antenna with better performance. Embodiments can be used in wireless radio-frequency (RF) front-ends. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Techniques for controlling transmit power and adjusting an antenna tuning network of a wireless device are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or a circuit module) includes a directional coupler and at least one detector. The directional coupler receives an input radio frequency (RF) signal at a first port, provides an output RF signal at a second port, and provides a coupled RF signal at a third port. The detector(s) receive at least one RF signal on at least one port of the directional coupler, measure the at least one RF signal, and provide measurements that are used to control the transmit power of the wireless device and adjust an antenna tuning network. For example, the measurements may be used to determine incident power, reflected power, delivered power, etc., which may be used to control the transmit power and/or adjust the antenna tuning network.