Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a data source determining to send a multicast transmission for a multicast group having a multicast group identifier, wirelessly communicating an expression with at least one node in the multicast group, the expression based on the multicast group identifier, and sending the multicast transmission to the at least one node. The apparatus may a data receiver determining to receive a multicast transmission for a multicast group having a multicast group identifier, wirelessly communicating an expression with a data source in the multicast group, the expression based on the multicast group identifier, and receiving the multicast transmission from the data source.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) of a group of UEs may receive, from a group member of the group of UEs, traffic information including a transmission schedule associated with traffic of the group member UE. The UE may determine a discontinuous reception configuration for the group of UEs based at least in part on the transmission schedule. The discontinuous reception configuration may include a discontinuous reception schedule for the group of UEs. The UE may transmit, to the group of UEs, the discontinuous reception configuration.
Abstract:
The disclosure relates in some aspects to sharing wireless communication resources. For example, a first type of device allocated to use a first resource pool may dynamically use a second resource pool allocated for a second type of device. The first type of device may use an entry criteria to determine whether to use the second resource pool. In some aspects, the entry criteria may specify that resource sharing is permitted if a ratio of resources used by devices of the second type (relative to the total resources in the second resource pool) is less than a threshold. In addition, the first type of device may use an exit criteria to determine whether to stop using the second resource pool. In some aspects, the exit criteria may specify that resource sharing should stop if a ratio of resources used by devices of the second type is greater than a threshold.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, for a device-to-device communication with another UE, a modulation and coding scheme (MCS) configuration, of a set of MCS configurations, based at least in part on at least one of a transmission mode, a packet characteristic, a mobility state of the UE, a capability of the UE, a transmission mode of the device-to-device communication, a received indication from the other UE, or a combination thereof. The UE may transmit, to the other UE, data using an MCS selected based at least in part on the MCS configuration. Numerous other aspects are provided.
Abstract:
A method, a computer-readable medium, and an apparatus are provided for wireless communication. The apparatus receives data traffic from an application layer and assigns at least one Quality of Service (QoS) flow identifier (ID) for the data traffic based on radio resources information for the data traffic. The data packets for transmission with different radio resources are assigned different QoS flow IDs.
Abstract:
Methods, systems, and devices for wireless communications are described in which two or more UEs of a wireless communications system may establish a sidelink connection. A first UE that is initiating sidelink communications may evaluate whether the sidelink connection can support a quality of service (QoS) for a data flow prior to admitting the data flow. The first UE may evaluate a link quality with one or more other UEs that are to use the data flow on the sidelink connection, evaluate system congestion of time/frequency resources that are available for the sidelink connection, or any combinations thereof, and admit the data flow based on the evaluation. A link quality of the sidelink connection may be determined based on a type of communication associated with the data flow, such as unicast communications with one other UE, multicast communications with multiple other UEs, or broadcast transmissions to multiple UEs.
Abstract:
Techniques are provided which may be implemented using various methods and/or apparatuses in a vehicle to utilize vehicle external sensor data, vehicle internal sensor data, vehicle capabilities and external CV2X input to determine, send, receive and utilize data elements to determine inter-vehicle spacing, intersection priority, lane change behavior and spacing and other autonomous vehicle behavior.
Abstract:
Certain aspects of the present disclosure are generally directed to vehicle techniques for selecting communication options for vehicle to everything (V2X) type communications. Certain aspects provide a method for wireless communication by a user-equipment (UE). The method generally includes receiving one or more parameters for selection of one or more features associated with one or more radio-access technology (RATs), and selecting the one or more features to be used for communicating with one or more other UEs using a V2X communication protocol. The selection of the one or more features may be based on the one or more parameters. The method may also include communicating with the one or more other UEs via the selected one or more features.
Abstract:
Aspects directed towards network-assisted sidelink scheduling are disclosed. In one example, a scheduled entity receives coverage status information of a peer user equipment (UE), and transmits a coverage status report to a network in which the coverage status report is based on the coverage status information received from the peer UE. The scheduled entity receives a resource scheduling from the network in response to transmitting the coverage status report, and establishes a sidelink communication with the peer UE based on the resource scheduling. In another example, a scheduling entity receives a coverage status report from a UE in which the coverage status report is associated with a peer UE of the UE. The scheduling entity determines a resource scheduling for the UE based on the coverage status report to facilitate a sidelink communication between the UE and the peer UE, and transmits the resource scheduling to the UE.
Abstract:
Techniques are provided for supporting sidelink communication between multiple user equipment (UEs), and which may be implemented in various apparatuses, methods, and/or articles of manufacture. In certain aspects a first UE may establish a sidelink schedule with a second UE, wherein the sidelink schedule corresponds to at least a subset of communication resources indicated available to both the first and second UEs by one or more corresponding link availability schedules or the like. The two UEs may then establish a sidelink with the second UE in accordance with the sidelink schedule. Multiple sidelink schedules may be agreed upon in certain instances such that the UEs may dynamically switch from one schedule to another as desired.