Abstract:
A memory device includes a stack of circuit layers, each circuit layer having formed thereon a memory circuit configured to store data and a redundant resources circuit configured to provide redundant circuitry to correct defective circuitry on at least one memory circuit formed on at least one layer in the stack. The redundant resources circuit includes a partial bank of redundant memory cells, wherein an aggregation of the partial bank of redundant memory cells in each of the circuit layers of the stack includes at least one full bank of redundant memory cells and wherein the redundant resources circuit is configured to replace at least one defective bank of memory cells formed on any of the circuit layers in the stack with at least a portion of the partial bank of redundant memory cells formed on any of the circuit layers in the stack.
Abstract:
Pixel circuits in an image sensor are sampled repetitively during an image frame period. At each sampling, a signal indicative of the photocharge integrated by a pixel circuit since last reset is compared to a threshold. If the integrated photocharge signal has not reached the threshold, the pixel circuit is permitted to continue integrating photocharge. If the integrated photocharge signal has reached the threshold, the pixel circuit is reset to remove integrated photocharge and photocharge integration for that pixel circuit is restarted. A corresponding pixel circuit value is recorded for the reset pixel circuit.
Abstract:
A method of operation in an integrated circuit (IC) memory device is disclosed. The method includes refreshing a first group of storage rows in the IC memory device at a first refresh rate. A retention time for each of the rows is tested. The testing for a given row under test includes refreshing at a second refresh rate that is slower than the first refresh rate. The testing is interruptible based on an access request for data stored in the given row under test.
Abstract:
Disclosed is a dynamic random access memory that has columns, data rows, tag rows and comparators. Each comparator compares address bits and tag information bits from the tag rows to determine a cache hit and generate address bits to access data information in the DRAM as a multiway set associative cache.
Abstract:
Row activation operations within a memory component are carried out with respect to subrows instead of complete storage rows to reduce power consumption. Further, instead of activating subrows in response to row commands, subrow activation operations are deferred until receipt of column commands that specify the column operation to be performed and the subrow to be activated.
Abstract:
A method of operation in an integrated circuit (IC) memory device is disclosed. The method includes refreshing a first group of storage rows in the IC memory device at a first refresh rate. A retention time for each of the rows is tested. The testing for a given row under test includes refreshing at a second refresh rate that is slower than the first refresh rate. The testing is interruptible based on an access request for data stored in the given row under test.
Abstract:
An integrated circuit (IC) memory device includes an array of storage cells configured into multiple regions. Monitoring circuitry is coupled to each of the multiple regions to detect and generate per-region operating parameter information. Refresh circuitry generates per-region refresh information for the multiple regions based on the per-region operating parameter information.
Abstract:
A memory device includes a first dynamic random access memory (DRAM) integrated circuit (IC) chip including first memory core circuitry, and first input/output (I/O) circuitry. A second DRAM IC chip is stacked vertically with the first DRAM IC chip. The second DRAM IC chip includes second memory core circuitry, and second I/O circuitry. Solely one of the first DRAM IC chip or the second DRAM IC chip includes a conductive path that electrically couples at least one of the first memory core circuitry or the second memory core circuitry to solely one of the first I/O circuitry or the second I/O circuitry, respectively.
Abstract:
An integrated circuit memory device is disclosed. The memory device includes an array of storage cells configured into multiple banks. Each bank includes multiple segments. Register storage stores per-segment values representing per-segment refresh parameters. Refresh logic refreshes each segment in accordance with the corresponding per-segment value.
Abstract:
A sense amplifier for a memory device includes a primary latch and a holding latch that are independently controllable. The primary latch comprises a first set of transistors and the holding latch includes a second set of transistors having higher threshold voltages than the first set of transistors. In conjunction with a memory access operation, the primary latch and the holding latch sense and amplify a differential voltage of a pair of bitlines. A connectivity control circuit controls connectivity of the primary latch in different operational modes including pre-charge, offset pre-compensation, and amplification. In an active idle mode in between memory access operations while the wordline may remain active, the connectivity control circuit may turn off the primary latch while the holding latch holds the differential voltage on the bitlines to avoid leakage current through the primary latch.