Abstract:
A memory system in which a timing drift that would occur in distribution of a first timing signal for data transport in a memory device is determined by measuring the actual phase delays occurring in a second timing signal that has a frequency lower than that of the first timing signal and is distributed in one or more circuits mimicking the drift characteristics of at least a portion of distribution of the first timing signal. The actual phase delays are determined in the memory device and provided to a memory controller so that the phases of the timing signals used for data transport may be adjusted based on the determined timing drift.
Abstract:
Duty cycle error vectors that indicate both the magnitude and direction of the duty cycle error relative to a desired duty cycle are generated within a duty cycle measurement circuit, enabling threshold-based determination of whether duty cycle adjustment is necessary, refraining from power-consuming adjustment and follow-up measurement in those cases where the duty cycle is within a target range. When duty cycle adjustment is deemed necessary, the magnitude of the duty cycle error indicated by the duty cycle error vector may be applied to effect proportional rather than incremental duty cycle adjustment, quickly returning the clock duty cycle to a target range.
Abstract:
A memory system in which a timing drift that would occur in distribution of a first timing signal for data transport in a memory device is determined by measuring the actual phase delays occurring in a second timing signal that has a frequency lower than that of the first timing signal and is distributed in one or more circuits mimicking the drift characteristics of at least a portion of distribution of the first timing signal. The actual phase delays are determined in the memory device and provided to a memory controller so that the phases of the timing signals used for data transport may be adjusted based on the determined timing drift.
Abstract:
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
Abstract:
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
Abstract:
A micro-threaded memory device. A plurality of storage banks are provided, each including a plurality of rows of storage cells and having an access restriction in that at least a minimum access time interval must transpire between successive accesses to a given row of the storage cells. Transfer control circuitry is provided to transfer a first amount of data between the plurality of storage banks and an external signal path in response to a first memory access request, the first amount of data being less than a product of the external signal path bandwidth and the minimum access time interval.
Abstract:
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
Abstract:
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
Abstract:
In one embodiment, a memory device includes a memory core and input receivers to receive commands and data. The memory device also includes a register to store a value that indicates whether a subset of the input receivers are powered down in response to a control signal. A memory controller transmits commands and data to the memory device. The memory controller also transmits the value to indicate whether a subset of the input receivers of the memory device are powered down in response to the control signal. In addition, in response to a self-fresh command, the memory device defers entry into a self-refresh operation until receipt of the control signal that is received after receiving the self-refresh command.
Abstract:
A method for calibrating a communication channel coupling first and second components includes transmitting a data signal from the first component to the second component on the communication channel, and sensing a characteristic, such as phase, of the data signal on the second component. Information about the sensed characteristic is fed back to the first component using an auxiliary channel. An adjustable parameter, such as phase, for the transmitter is adjusted on the first component in response to the information. Also, a characteristic of a data signal received from the transmitter on the second component is sensed and used to adjust an adjustable parameter for the receiver on the first component.