Abstract:
A thermal barrier coating (18) having a less dense bottom layer (20) and a more dense top layer (22) with a plurality of segmentation gaps (28) formed in the top layer to provide thermal strain relief. The top layer may be at least 95% of the theoretical density in order to minimize the densification effect during long term operation, and the bottom layer may be no more than 95% of the theoretical density in order to optimize the thermal insulation and strain tolerance properties of the coating. The gaps are formed by a laser engraving process controlled to limit the size of the surface opening to no more than 50 microns in order to limit the aerodynamic impact of the gaps for combustion turbine applications. The laser engraving process is also controlled to form a generally U-shaped bottom geometry (54) in the gaps in order to minimize the stress concentration effect.
Abstract:
A method of forming a cooling feature (28) on a surface (14) of a substrate (12) to protect the substrate from a high temperature environment. The cooling feature is formed by first depositing a layer of a masking material (16) such as epoxy resin on the surface of the substrate. A pattern of voids (18) is then cut into the masking material by a laser engraving process which exposes portions of the substrate surface. A plurality of supports (20) are then formed by electroplating a support material onto the exposed portions of the substrate surface. A layer of material is then electroplated onto the supports and over the masking material to form a skin that interconnects the supports. Finally, the remaining portions of the masking material are removed to form a plurality of cooling channels (26) defined by the supports, skin and substrate surface. An additional layer of material (42) may be deposited onto a top surface (50) of the cooling feature to provide additional thermal and/or mechanical protection.
Abstract:
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32′ or 34′) covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Abstract:
Aqueous polyurethane coating compositions are disclosed in this specification. The aqueous polyurethane coating compositions contain a polycarbonate-polyurethane resin component and a water-dilutable, ethylenically unsaturated polyurethane polyol component.
Abstract:
An integrated, self-powered, sensing and transmitting module (300) that can be placed within an operating environment, such as by being affixed to a gas turbine engine component, in order to sense the local operating environment and to deliver real-time operating environment data to a location outside of the environment. Such a module may integrate a power element (302); a sensing element 9304); and a transmitting element (308) on a single substrate (320) within a single housing (310). Both sensors and circuitry components are formed directly on or in the substrate in novel configurations to decrease the size and weight of the module.
Abstract:
A peer-to-peer network has a server that maintains a list of addresses of clients connected to the peer-to-peer network. The server generates seed lists for each of the clients connected to the network from the server maintained list. The clients conduct peer-to-peer searches using the seed list provided by the server. The seed lists may be either randomly generated or generated to facilitate network objectives. The clients may periodically request seed list refreshing. The peer-to-peer network may further include authentication and authorization search security checks.
Abstract:
Aqueous polyurethane coating compositions are disclosed in this specification. The aqueous polyurethane coating compositions contain a polycarbonate-polyurethane resin component, an aminoplast resin component, and a polyester polyol component.
Abstract:
Aqueous polyurethane coating compositions are disclosed in this specification. The aqueous polyurethane coating compositions contain a polycarbonate-polyurethane resin component, an aminoplast resin component, and a polyacrylic polyol component.
Abstract:
A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
Abstract:
There is described a Ceramic Powder, a Ceramic Layer and a Layer System with Pyrochlore Phase and Oxides. Besides a good thermal insulation property, thermal insulation layer systems must also have a long lifetime of the thermal insulation layer. A described layer system has a layer sequence of a metallic bonding layer, an inner ceramic layer and an outer ceramic layer, which are specially matched to one another.