摘要:
The present invention relates to a novel quinolone compound having an excellent antibacterial activity. More specifically, the present invention relates to 7-(4-aminomethyl-3-methyloxyiminopyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine -3-carboxylic acid represent by the following formula: ##STR1## or its isomer.
摘要:
The present invention relates to a novel quinolone compound having an excellent antibacterial activity. More specifically, the present invention relates to 7-(4-aminomethyl-3-methyloxyiminopyrrolidin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1, 4-dihydro-1,8-naphthyridine-3-carboxylic acid represent by the following formula: ##STR1## or its isomer.
摘要:
The present invention relates to a novel quinolone compound having an excellent antibacterial activity. More specifically, the present invention relates to a novel quinoline(naphthyridine)carboxylic acid derivative represented by the following formula (I), which has an 4-aminomethyl-3-oximepyrrolidine substituent on 7-position of the quinolone nucleus and shows a superior antibacterial activity in contrast to the known quinolone antibacterial agents having a weak activity against gram-positive bacterial strains and also has a broad antibacterial spectrum and a highly improved pharmacokinetic property: ##STR1## wherein R, R.sub.1, R.sub.2, R.sub.3, R.sub.4 and Q are defined as described in the specification.
摘要:
A semiconductor memory device, e.g., a DRAM, which includes a P-type semiconductor substrate, a memory array each memory cell of which includes at least one N-channel MOS transistor, a CMOS peripheral circuit at least partially surrounding the memory array, the peripheral circuit including at least one P-channel MOS transistor formed in an N-type well region formed in the substrate, and at least one N-channel MOS transistor formed in the substrate outside of the N-type well region, and, a P-type minority carrier absorption semiconductor region formed in the substrate between the N-type well region and the memory array. The minority carrier absorption semiconductor region is preferably connected to a source of negative voltage, e.g., the substrate bias voltage, and a separate N-type region formed in the N-type well region is preferably connected to a source of positive voltage, e.g., the power supply voltage, Vdd, of the memory device. The N-type well region functions to absorb or capture hot electrons generated by the N-channel MOS transistor of the CMOS peripheral circuit, and the P-type minority carrier absorption semiconductor region functions to absorb or capture holes which would otherwise combine with the hot electrons to induce substrate current which could deleteriously lower the threshold voltage level of the memory cells of the memory array and thereby degrade the data storage integrity thereof.
摘要:
A semiconductor memory device having normal columns and redundant columns includes normal column decoders for designating the normal columns and redundant column decoders for designating the redundant columns so that the bits from the normal columns are combined with the bits from the redundant columns so as to provide an entire byte. The normal column decoders are to be operated simultaneously with the redundant column decoders.
摘要:
A delay locked loop (DLL) circuit includes a timing pulse generating unit configured to generate a plurality of timing pulses, which are sequentially pulsed during delay shifting update periods, in response to a source clock, wherein the number of the generated timing pulses changes according to a frequency of the source clock; a clock delay unit configured to compare a phase of the source clock with a phase of a feedback clock at a time point defined by each of the timing pulses, and delay a phase of an internal clock, corresponding to a rising or falling edge of the source clock, according to the comparison result; and a delay replica modeling unit configured to reflect actual delay conditions of the internal clock path on an output clock of the clock delay unit, and to output the feedback clock.
摘要:
A semiconductor memory apparatus includes a phase comparator configured to compare phases of rising and falling feedback clocks with that of a reference clock, a delay circuit configured to delay the reference clock by a predetermined time based on a comparison result of the phase comparator to thereby generate rising and falling delayed clocks, a clock transmission block configured to invert the rising delayed clock outputted from the delay circuit when the rising and falling feedback clocks have substantially different phases, a duty compensator configured to compensate a duty ratio from outputs of the clock transmitting block to generate a delay locked clock having a compensated duty ratio, and a delay model configured to delay an output and an inverse output of the duty compensator by a modeled delay time respectively to generate the rising and falling feedback clocks.
摘要:
A backlight apparatus includes a substrate which includes a plurality of layers. A plurality of light emitting modules are arranged on a top layer of the plurality of layers closest to a light guide panel, and a plurality of wires penetrates through the plurality of layers to electrically connect the light emitting modules and a plurality of driving units. Accordingly, the width of the substrate of an edge type backlight apparatus which can provide local dimming is reduced. Therefore, the display apparatus using the edge type backlight apparatus can be slim even if it is designed to provide local dimming.
摘要:
Apparatuses and methods for charge sharing between signal lines are disclosed. An example apparatus may include first and second lines and a charge sharing circuit, The charge sharing circuit may be coupled to the first line and the second line and configured to receive a first data signal and a second data signal. The charge sharing circuit may be further configured to cause charge to be shared between the first line and the second line responsive, at least in part, to the first data signal and the second data signal having different logic levels.