Abstract:
A nonaqueous electrolyte secondary battery according to an embodiment of the invention includes: a flat electrode assembly including a positive electrode and a negative electrode; a bottomed prismatic hollow outer can storing the flat electrode assembly and a nonaqueous electrolyte and having an opening portion; and a sealing plate sealing the opening portion of the hollow outer can. The nonaqueous electrolyte contains at least one of a lithium salt having an oxalate complex as an anion and lithium difluorophosphate (LiPF2O2). The outer surface area of a battery outer body including the hollow outer can and the sealing plate is 350 cm2 or more. With this configuration, the nonaqueous electrolyte secondary battery has excellent battery characteristics.
Abstract:
A prismatic secondary battery includes a prismatic hollow outer body having a mouth and a bottom; a flat electrode assembly, a positive electrode collector, a negative electrode collector, and an electrolyte, all of which are stored in the prismatic outer body; a sealing plate sealing up the mouth of the prismatic outer body; and a positive electrode terminal attached to the sealing plate in an electrically insulated manner. The sealing plate includes a gas release valve and an electrolyte pour hole and further includes, on the front face, a concaved flat face having an identification code. With the prismatic secondary battery of the invention, a jig for assembly or the like is unlikely to come into contact with the identification code during an assembly process of the prismatic secondary battery, hence the identification code is unlikely to be abraded, and the traceability is unlikely to be lost.
Abstract:
An insulation sheet is disposed between a rectangular housing and an electrode body. A first side wall of the insulation sheet is disposed between a large-area side surface of the rectangular housing and the electrode body. The first side wall includes a first folded portion that is folded along an edge of the first side wall near a sealing plate. The first folded portion extends from an edge of the first side wall near the sealing plate toward a bottom surface of the rectangular housing and is disposed between the large-area side surface and the electrode body in such a way that the first folded portion overlaps the first side wall.
Abstract:
Disclosed is a highly reliable prismatic secondary battery with a current interruption mechanism that is unlikely to be damaged even if the battery is subjected to shock due to vibration, falling, etc. A second insulating member that has a through-hole is disposed between an inversion plate and the first region of a positive electrode collector, and through the through-hole the first region of the positive electrode collector is electrically connected to the inversion plate. First to third projections to formed around the through-hole formed in the second insulating member fit respectively into first to third openings formed in the first region of the positive electrode collector, and the diameters of their apexes are widened, thus forming first to third fixing portions. Thereby, the second insulating member is robustly joined to the first region of the positive electrode collector.
Abstract:
A sealing plate for a prismatic secondary battery includes a pair of mouths for attaching a negative and positive electrode terminals, one mouth being formed near one end in a longitudinal direction of the sealing plate, and the other mouth being formed near the other end, coining areas used for positioning of an insulating member and formed around the pair of mouths on a front face of the sealing plate, a gas release valve and an electrolyte pour hole formed between the pair of mouths, and grooves formed between the respective coining areas and the long side edge of the sealing plate. The groove has a smaller depth near the gas release valve than the depth near the coining area. Even when the sealing plate is produced through forging, the front face has good flatness and the coining areas are unlikely to have a sink mark or a shear drop.
Abstract:
A nonaqueous electrolyte secondary battery according to an embodiment of the present invention includes an electrode assembly, a nonaqueous electrolyte, and a metallic container. The electrode assembly includes a positive electrode, a negative electrode, and a separator. The negative electrode is opposed to the positive electrode. The separator is disposed between the positive electrode and the negative electrode. The nonaqueous electrolyte contains lithium bis(oxalato)borate (LiBOB). The container houses the electrode assembly and the nonaqueous electrolyte. At least part of the container has positive electrode potential.
Abstract:
A nonaqueous electrolyte secondary battery includes a flat winding electrode assembly including a positive electrode substrate exposed portion on one end and a negative electrode substrate exposed portion on the other end. The winding numbers of the positive and the negative electrode substrate exposed portions are each 30 or more. The positive and negative electrode substrate exposed portions each have an outermost surface welded and connected with a positive and a negative electrode collectors, respectively. A nonaqueous electrolyte used to fabricate the battery contains a lithium salt having an oxalate complex as an anion. At the welded connection portions, all of the layers of the positive electrode substrate exposed portion are melted to be welded and connected to the positive electrode collector, and all of the layers of the negative electrode substrate exposed portion are melted to be welded and connected to the negative electrode collector.
Abstract:
A groove is formed in a ring shape and a ring-shaped convexity is formed on the periphery of a through-hole of a positive electrode terminal plate. An upper end side of a crimping part of a positive electrode exterior terminal is inserted through the through-hole of the positive electrode terminal plate and crimped, and welded spots are formed by irradiation with high-energy beams between a distal end side of the crimping part and the convexity. The mechanical and electrical connection of an exterior terminal and a terminal plate to the crimping part through welding with high-energy beams makes it possible to provide a prismatic secondary battery of enhanced reliability in which cracking is less likely to occur in the welded spots, the coupling strength between the exterior terminal and the terminal plate is increased, and fluctuations in the internal resistance are curbed.
Abstract:
A crimped portion of a positive electrode external terminal is crimped on its upper end side to be electrically connected to a positive electrode terminal plate. This crimped portion is welded to the positive electrode terminal plate by applying high energy beams. The negative electrode side has a configuration similar to that of the positive electrode side. The contact area between the positive electrode terminal plate and the crimped portion of the positive electrode external terminal is set smaller than the corresponding contact area on the negative electrode side, and the volume of the crimped portion of the positive electrode external terminal is set larger than that of the corresponding crimped portion on the negative electrode side. Thus, a prismatic secondary battery is provided that shows strong joining strength between the external terminal and the terminal plate, suppressed internal resistance variations, and improved reliability.
Abstract:
A nonaqueous electrolyte secondary battery includes a current interruption mechanism in at least one of a conductive pathway from the positive electrode sheet to the outside of the outer body and a conductive pathway from the negative electrode sheet to the outside of the outer body. The current interruption mechanism interrupts electric current when the pressure in the outer body exceeds a predetermined value. The nonaqueous electrolyte contains an overcharge inhibitor. The overcharge inhibitor is contained in an amount of 3.0% or more and 4.5% or less with respect to the spatial volume in the outer body in terms of volume ratio. The nonaqueous electrolyte secondary battery has excellent output characteristics in a low temperature condition and can sufficiently ensure reliability even when the battery is overcharged through two-step charging in a low temperature condition.