Abstract:
Imaging systems, and image pixels and related methods. At least one example is an image sensor comprising a plurality of image pixels. Each image pixel may comprise: a color router defining a router collection area on an upper surface; a first photosensitive region beneath the color router; a second photosensitive region beneath the color router; and a third photosensitive region beneath the color router. The color router may be configured to route photons of a first wavelength received at the router collection area to the first photosensitive region, route photons of a second wavelength received at the router collection area to the second photosensitive region, and route photons of a third wavelength received at the router collection area to the third photosensitive region.
Abstract:
An image sensor package may include a semiconductor wafer having a pixel array, a color filter array (CFA) formed over the pixel array, and one or more lenses formed over the CFA. A light block layer may couple over the semiconductor wafer around a perimeter of the lenses and an encapsulation layer may be coupled around the perimeter of the lenses and over the light block layer. The light block layer may form an opening providing access to the lenses. A mold compound layer may be coupled over the encapsulation layer and the light block layer. A temporary protection layer may be used to protect the one or more lenses from contamination during application of the mold compound and/or during processes occurring outside of a cleanroom environment.
Abstract:
An imaging device may include single-photon avalanche diodes (SPADs). To improve the sensitivity and signal-to-noise ratio of the SPADs, light scattering structures may be formed in the semiconductor substrate to increase the path length of incident light through the semiconductor substrate. The light scattering structures may include a low-index material formed in trenches in the semiconductor substrate. One or more microlenses may focus light onto the semiconductor substrate. Areas of the semiconductor substrate that receive more light from the microlenses may have a higher density of light scattering structures to optimize light scattering while mitigating dark current.
Abstract:
Various embodiments of the present technology may comprise a method and apparatus for a biosensor. The biosensor comprises a vertical flow channel that extends through a photodiode, and wherein the photodiode is lateral to the channel's vertical sidewall.
Abstract:
Implementations of image sensors may include: a first die including a plurality of detectors adapted to convert photons to electrons; a second die including a plurality of transistors, passive electrical components, or both transistors and passive electrical components; a third die including analog circuitry, logic circuitry, or analog and logic circuitry. The first die may be hybrid bonded to the second die, and the second die may be fusion bonded to the third die. The plurality of transistors, passive electrical components, or transistors and passive electrical components of the second die may be adapted to enable operation of the plurality of detectors of the first die. The analog circuitry, logic circuitry, and analog circuitry and logical circuitry may be adapted to perform signal routing.
Abstract:
Color filters may affect imaging performance attributes such as low light sensitivity, color accuracy, and modulation transfer function (MTF). In an image pixel array, these factors are influenced by both the spectral absorption and pattern of the color filter elements. Different portions of an image sensor may prioritize different imaging performance attributes. Accordingly, in certain applications it may be beneficial for color filter characteristics to vary across an image sensor. Different color filters of the same color may have different structures to optimize imaging performance across the image sensor.
Abstract:
Various embodiments of the present technology may comprise a method and apparatus for an image sensor. The image sensor may comprise a color filter with a convex surface and a corresponding underlying dielectric element. The convex surface of the color filter is parallel to a convex surface of the dielectric element, wherein the convex shape of the color filter is substantially equal to the convex shape of the dielectric element.
Abstract:
Methods of forming an image sensor chip scale package. Implementations may include providing a semiconductor wafer having a pixel array, forming a first cavity through the wafer and/or one or more layers coupled over the wafer, filling the first cavity with a fill material, planarizing the fill material and/or the one or more layers to form a first surface of the fill material coplanar with a first surface of the one or more layers, and bonding a transparent cover over the fill material and the one or more layers. The bond may be a fusion bond between the transparent cover and a passivation oxide; a fusion bond between the transparent cover and an anti-reflective coating; a bond between the transparent cover and an organic adhesive coupled over the fill material, and/or; a bond between a first metallized surface of the transparent cover and a metallized layer coupled over the wafer.
Abstract:
An image sensor. Implementations may include: a first die including a plurality of pixels; a second die including a plurality of transistors, capacitors, or both transistors and capacitors; a third die including analog circuitry, logic circuitry, or analog and logic circuitry. The first die may be hybrid bonded to the second die, and the second die may be fusion bonded to the third die. The plurality of transistors, capacitors or transistors and capacitors of the second die may be adapted to enable operation of the plurality of pixels of the first die. The analog circuitry, logic circuitry, and analog circuitry and logical circuitry may be adapted to perform signal routing.
Abstract:
An imaging system may include an image sensor having an array of image pixels with a photosensitive region that generates image signals in response to light. The array may include photoluminescent material that absorbs light of a first range of wavelengths and emits light of a second range of wavelengths onto the photosensitive region. The first range of wavelengths may correspond to ultraviolet light, and the second range of wavelengths may correspond to visible light. The photoluminescent material may be formed over some or all of the image pixels. The array may include color filter elements that transmit light of a given color to the photosensitive region. The photoluminescent material may be adjusted to have a peak emission intensity at a color of light that corresponds to the given color of light transmitted by a given color filter element.