Abstract:
A novel element, a novel formation method of a film, or a novel formation method of an element is provided. Alternatively, a film including graphene is formed at low cost and high yield. A formation method of a film including graphene includes a first step of forming a film including graphene oxide that includes a first region and a second region by application of a dispersion liquid in which graphene oxide is dispersed over a substrate and removal of dispersion medium from the applied dispersion liquid, a second step of forming a film including graphene by light irradiation to the first region to reduce the first region, and a third step of removing the second region by washing.
Abstract:
An object is to suppress electrochemical decomposition of an electrolyte solution and the like at a negative electrode in a lithium ion battery or a lithium ion capacitor; thus, irreversible capacity is reduced, cycle performance is improved, or operating temperature range is extended. A negative electrode for a power storage device including a negative electrode current collector, a negative electrode active material layer which is over the negative electrode current collector and includes a plurality of particles of a negative electrode active material, and a film covering part of the negative electrode active material. The film has an insulating property and lithium ion conductivity.
Abstract:
To provide a method of manufacturing a lithium-ion secondary battery having stable charge characteristics and lifetime characteristics. A positive electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance before a secondary battery is completed. In this manner, the positive electrode can have stability. The use of the positive electrode enables manufacture of a highly reliable secondary battery. Similarly, a negative electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance. The use of the negative electrode enables manufacture of a highly reliable secondary battery.
Abstract:
A fabricating method and a fabricating apparatus for a lithium-ion secondary battery having stable charge characteristics and lifetime characteristics are provided. A positive electrode is subjected to an electrochemical reaction in a large amount of electrolyte solution in advance before a secondary battery is completed. In this manner, the positive electrode can have stability. In a manner similar to that of the positive electrode, a negative electrode is also subjected to the electrochemical reaction in a large amount of the electrolyte solution in advance, whereby a high reliable secondary battery can be manufactured.
Abstract:
To inhibit degradation of charge and discharge cycle characteristics of a secondary battery. To suppress generation of defects due to expansion and contraction of an active material in a negative electrode. To inhibit deterioration of an electrode due to changes in its form. An electrode member including a current collector, an active material, and a porous body is used. The porous body is in contact with one surface of the current collector and includes a plurality of spaces. The active material is located in the space in the porous body. The space has a larger size than the active material.
Abstract:
To provide a highly reliable power storage device, to improve the security of a power storage device, and to suppress deterioration of a power storage device, a power storage device includes, inside an exterior material, a positive electrode, a negative electrode facing the positive electrode, an electrolyte solution between the positive electrode and the negative electrode, and an adsorbent. A separation body which is impermeable to the electrolyte solution and permeable to a gas is provided between the electrolyte solution and the adsorbent.
Abstract:
A lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolyte provided between the positive electrode and the negative electrode. The positive electrode includes a positive electrode current collector and a positive electrode active material layer over the positive electrode current collector. The positive electrode active material layer includes a plurality of lithium-containing composite oxides each of which is expressed by LiMPO4 (M is one or more of Fe (II), Mn (II), Co (II), and Ni (II)) that is a general formula. The lithium-containing composite oxide is a flat single crystal particle in which the length in the b-axis direction is shorter than each of the lengths in the a-axis direction and the c-axis direction. The lithium-containing composite oxide is provided over the positive electrode current collector so that the b-axis of the single crystal particle intersects with the surface of the positive electrode current collector.
Abstract:
Highly accurate document search, especially intellectual property-related document search, is achieved with a simple input method. A processing portion has a function of generating text analysis data from text data input to an input portion; a function of extracting a search word from words included in the text analysis data; and a function of generating first search data from the search word on the basis of weight dictionary data and thesaurus data. A memory portion stores second search data generated when the first search data is modified by a user. The processing portion updates the thesaurus data in accordance with the second search data.
Abstract:
A highly accurate document search, particularly a search for a document relating to intellectual property, is achieved with an easy input method. A document search system includes a processing portion. The processing portion has a function of extracting a keyword included in text data, a function of extracting a related term of the keyword from words included in a plurality of pieces of first reference text analysis data, a function of giving a weight to each of the keyword and the related term, a function of giving a score to each of a plurality of pieces of second reference text analysis data on the basis of the weight, a function of ranking the plurality of pieces of second reference text analysis data on the basis of the score to generate ranking data, and a function of outputting the ranking data.
Abstract:
Text is generated from an object. Text is generated from a first object. The first object includes a second object and a third object. A step of detecting coordinate data of the second object is included. A step of detecting coordinate data of the third object is included. A step of extracting positional relation between the second object and the third object from coordinate data is included. A step of converting the extracted positional relation into graph data is included. A step of generating text about the positional relation between the second object and the third object from graph data is included.