Abstract:
A power storage device is reduced in weight. A metal sheet serving as a negative electrode current collector is separated and another negative electrode current collector is formed. For example, through the step of forming silicon serving as a negative electrode active material layer over a titanium sheet and then performing heating, the titanium sheet can be separated. Then, another negative electrode current collector with a thickness of more than or equal to 10 nm and less than or equal to 1 μm is formed. Thus, light weight of the power storage device can be achieved.
Abstract:
A lithium secondary battery which has high charge-discharge capacity, can be charged and discharged at high speed, and has little deterioration in battery characteristics due to charge and discharge is provided. A negative electrode includes a current collector and a negative electrode active material layer. The current collector includes a plurality of protrusion portions extending in a substantially perpendicular direction and a base portion connected to the plurality of protrusion portions. The protrusion portions and the base portion are formed using the same material containing titanium. A top surface of the base portion and at least a side surface of the protrusion portion are covered with the negative electrode active material layer. The negative electrode active material layer may be covered with graphene.
Abstract:
Graphene is formed with a practically uniform thickness on an uneven object. The object is immersed in a graphene oxide solution, and then taken out of the solution and dried; alternatively, the object and an electrode are immersed therein and voltage is applied between the electrode and the object used as an anode. Graphene oxide is negatively charged, and thus is drawn to and deposited on a surface of the object, with a practically uniform thickness. After that, the object is heated in vacuum or a reducing atmosphere, so that the graphene oxide is reduced to be graphene. In this manner, a graphene layer with a practically uniform thickness can be formed even on a surface of the uneven object.
Abstract:
To provide a power storage device whose charge and discharge characteristics are unlikely to be degraded by heat treatment. To provide a power storage device that is highly safe against heat treatment. The power storage device includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and an exterior body. The separator is located between the positive electrode and the negative electrode. The separator contains polyphenylene sulfide or solvent-spun regenerated cellulosic fiber. The electrolytic solution contains a solute and two or more kinds of solvents. The solute contains LiBETA. One of the solvents is propylene carbonate.
Abstract:
A composite oxide with high diffusion rate of lithium is provided. Alternatively, a lithium-containing complex phosphate with high diffusion rate of lithium is provided. Alternatively, a positive electrode active material with high diffusion rate of lithium is provided. Alternatively, a lithium ion battery with high output is provided. Alternatively, a lithium ion battery that can be manufactured at low cost is provided. A positive electrode active material is formed through a first step of mixing a lithium compound, a phosphorus compound, and water, a second step of adjusting pH by adding a first aqueous solution to a first mixed solution formed in the first step, a third step of mixing an iron compound with a second mixed solution formed in the second step, a fourth step of performing heat treatment under a pressure more than or equal to 0.1 MPa and less than or equal to 2 MPa at a highest temperature more than 100° C. and less than or equal to 119° C. on a third mixed solution formed in the third step with a pH of more than or equal to 3.5 and less than or equal to 5.0.
Abstract:
A power storage device with high capacity or high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode includes an active material, a first binder, and a second binder. The specific surface area of the active material is S [m2/g]. The weight of the active material, the weight of the first binder, and the weight of the second binder are a, b, and c, respectively. The solution of {(b+c)/(a+b+c)}×100÷S is 0.3 or more. The electrode includes a first film in contact with the active material. The first film preferably includes a region in contact with the active material. The first film preferably includes a region with a thickness of 2 nm or more and 20 nm or less. The first film contains a water-soluble polymer.
Abstract:
A secondary battery in which graphite that is an active material can occlude and release lithium efficiently is provided. Further, a highly reliable secondary battery in which the amount of lithium inserted and extracted into/from graphite that is an active material is prevented from varying is provided. The secondary battery includes a negative electrode including a current collector and graphite provided over the current collector, and a positive electrode. The graphite includes a plurality of graphene layers. Surfaces of the plurality of graphene layers are provided substantially along the direction of an electric field generated between the positive electrode and the negative electrode.
Abstract:
To provide a storage battery including a carbon-based material. To provide a graphene compound film having desired ion conductivity and mechanical strength while preventing direct contact between electrodes in a storage battery. To achieve long-term reliability. A lithium-ion storage battery includes a positive electrode, a negative electrode, an exterior body, and a separator between the positive electrode and the negative electrode. In the lithium-ion storage battery, one of the positive electrode and the negative electrode is wrapped in a first film, and the positive electrode, the negative electrode, and the separator are stored in the exterior body. The first film may include a first region in which the first film includes a first functional group. The first film may further include a second region in which the first film includes a second functional group different from the first functional group. The first film may be a graphene compound film.
Abstract:
To provide a manufacturing method of graphene oxide that allows mass production through a relatively simple process, at low costs, and with safety and efficiency. A hydrogen peroxide solution, sulfuric acid, and flake graphite are put in a reaction container, and the mixture is stirred to obtain expansion graphite. The synthesized expansion graphite is washed not with pure water but with a saturated aqueous solution of magnesium sulfate (MgSO4) or an organic solvent, whereby a large amount of sulfuric acid is contained between graphite layers. The expansion graphite is subjected to heat treatment or microwave irradiation to form expanded graphite, and a graphite layer is peeled by ultrasonic treatment and then oxidized to form a graphene compound.
Abstract:
To provide a power storage device whose charge and discharge characteristics are unlikely to be degraded by heat treatment. To provide a power storage device that is highly safe against heat treatment. The power storage device includes a positive electrode, a negative electrode, a separator, an electrolytic solution, and an exterior body. The separator is located between the positive electrode and the negative electrode. The separator contains polyphenylene sulfide or solvent-spun regenerated cellulosic fiber. The electrolytic solution contains a solute and two or more kinds of solvents. The solute contains LiBETA. One of the solvents is propylene carbonate.