Abstract:
Electrostatic discharge (ESD) protection is provided by a circuit including a resistor having a first terminal and a second terminal, a zener diode having a cathode terminal directly connected to said first terminal and an anode terminal directly connected to a third terminal, and a clamp diode having a cathode terminal directly connected to said second terminal and an anode terminal directly connected to said third terminal.
Abstract:
An integrated artificial neuron device includes a refractory circuit configured to inhibit signal integration for an inhibition duration after delivery of an output signal. The refractory circuit includes a first MOS transistor coupled between an input node and a reference node and having a gate connected to the output node by a second MOS transistor having a first electrode coupled to the supply node and a gate coupled to the output node. The refractory circuit further includes a resistive-capacitive circuit coupled between the supply node, the reference node and the gate of the second MOS transistor. An inhibition duration depends on a time constant of the resistive-capacitive circuit.
Abstract:
The invention relates to an integrated circuit (1), comprising: a field-effect transistor (2), comprising: first and second conduction electrodes (201, 202); a channel zone (203) arranged between the first and second conduction electrodes; a gate stack (220) arranged vertically in line with the channel zone, and comprising a gate electrode (222); an RRAM-type memory point (31) formed under the channel zone, or formed in the gate stack under the gate electrode.
Abstract:
An electronic device includes an integrated circuit with a MOS transistor and a heating circuit electrically coupled to at least two points of one of the source or drain semiconductive region of the transistor. A portion of the source or drain semiconductive region between the two points forms a resistive element. The heating circuit is configured to cause a current to circulate through the resistive element between the two points to heat an active region of the transistor.
Abstract:
A data transmission circuit transmits a data signal over a transmission line. A digital to analog converter (DAC) operates to receive N-bit input digital values for conversion to corresponding ones of 2N different DC voltage levels. The DAC selects, for each N-bit input digital value, one of the 2N DC voltage levels. An analog to digital converter (ADC) operates to sense the DC voltage on the transmission line for conversion to a corresponding N-bit output digital value.
Abstract:
A substrate contact land for a first MOS transistor is produced in and on an active zone of a substrate of silicon on insulator type using a second MOS transistor without any PN junction that is also provided in the active zone. A contact land on at least one of a source or drain region of the second MOS transistor forms the substrate contact land.
Abstract:
An electronic device includes an integrated circuit with a MOS transistor and a heating circuit electrically coupled to at least two points of one of the source or drain semiconductive region of the transistor. A portion of the source or drain semiconductive region between the two points forms a resistive element. The heating circuit is configured to cause a current to circulate through the resistive element between the two points to heat an active region of the transistor.
Abstract:
A data transmission circuit transmits a data signal over a transmission line. A digital to analog converter (DAC) operates to receive N-bit input digital values for conversion to corresponding ones of 2N different DC voltage levels. The DAC selects, for each N-bit input digital value, one of the 2N DC voltage levels. An analog to digital converter (ADC) operates to sense the DC voltage on the transmission line for conversion to a corresponding N-bit output digital value.
Abstract:
A device includes, within a layer of silicon on insulator, a central semiconductor zone including a central region having a first type of conductivity, two intermediate regions having a second type of conductivity opposite to that of the first one, respectively disposed on either side of and in contact with the central region in order to form two PN junctions, two semiconductor end zones respectively disposed on either side of the central zone, each end zone comprising two end regions of opposite types of conductivity, in contact with the adjacent intermediate region, the two end regions of each end zone being mutually connected electrically in order to form the two terminals of the device.
Abstract:
An electronic device includes a module that delivers a positive temperature coefficient output voltage at an output terminal. A thermistor includes a first MOS transistor operating in weak inversion mode and having a negative temperature coefficient drain-source resistance and whose source is coupled to the output terminal. A current source coupled to the output terminal imposes the drain-source current of the first transistor.