Abstract:
The present disclosure relates to a light-emitting device comprising: a light source mounted on a substrate; a wire for providing a supply voltage or activation signal to the light source, a cap covering the light source and having a diffuser adapted to diffuse light generated by the light source; and either: a volume of glue fixing an intermediate section of the wire to the cap; or an arm fixed to the cap and extending between the intermediate section of the wire and the substrate.
Abstract:
An electronic device includes a first and a second integrated-circuit chip that are stacked at a distance from one another, and a plurality of electrical connection pillars and at least one protective barrier interposed between the chips. The protective barrier delimits a free space between mutually opposing local regions of the chips, and an encapsulation block extends around the chip that has the smaller mounting face and over the periphery of the mounting face of the other chip. The electrical connection pillars and the protective barrier are made of at least one identical metallic material with a view to simultaneous fabrication.
Abstract:
An electronic device includes a substrate plate with a traversing passage. An electronic component, mounted to the substrate plate, includes an integrated circuit chip with an optical sensor and an opaque protective plate mounted above the sensor. The electronic component is mounted with the chip facing the substrate plate such that the protective plate is engaged with the traversing passage. Electrical connection elements extend between the chip and the substrate plate. An internal block of encapsulation material extends into the traversing passage of the substrate plate between the chip and the substrate plate so as to embed the electrical connection elements.
Abstract:
An electronic device is formed by a stack of an integrated circuit chip and an optical plate. The integrated circuit chip includes integrated circuits (such as optical circuits) formed on or in a semiconductor substrate plate. The optical integrated circuits may form an optical sensor. An electrical connection network is provided on the top side of the semiconductor substrate plate. Electrical connection lugs, which are connected to the electrical connection network through electrical connection vias, are mounted on the back side of the semiconductor substrate plate. The vias are through silicon vias situated at a distance from the periphery of the semiconductor substrate plate. The optical plate is configured to allow light radiation to pass to the optical integrated circuits.
Abstract:
A package includes a substrate with an attached emitting IC chip and receiving IC chip. The emitting IC chip includes an optical emitter, and the receiving IC chip includes a main optical sensor and a secondary optical sensor. A case is provided with a bottom portion and a peripheral wall portion to cover the IC chips, wherein the edge of the peripheral wall portion is mounted to the substrate. The bottom portion of the case includes a main opening above the main optical sensor and a secondary opening above the optical emitter. An opaque material is interposed between the case and the receiving IC chip to isolate the main optical sensor from the secondary optical sensor and delimiting a chamber containing the secondary optical sensor and the optical emitter. The chamber is optically isolated from the main optical sensor and main opening, and may be filled with a transparent material.
Abstract:
A package includes an upper level mounted to a lower level. The upper level includes a stack formed by insulating layers and conductive elements and includes a first conductive track of an antenna. A plastic element rests on the stack. A first cavity is defined in the plastic element. A second conductive track of the antenna is located on a wall of the plastic element (for example, in or adjacent to the first cavity). A second cavity is also defined in the plastic element surrounding the first cavity. A third conductive track of the antenna is located on a wall of the plastic element (for example, in the second cavity). A third cavity is delimited between the upper and lower levels and an integrated circuit chip is mounted within the third cavity and electrically connected to the antenna.
Abstract:
An electronic chip supports an optical device and electric connection zones. An insulating coating coats the electronic chip, covers the electric connection zones and exposes the optical device. An optical plugging element is at least partly fastened onto a first face of the insulating coating and is optically coupled to the optical device. Vias pass through the insulating coating from its first face to a second face opposite to the first face. Inner walls of the vias support electrically conductive paths connected to the electric connection zones of the electronic chip by electrically conductive tracks arranged on the first face of the insulating coating. The electrically conductive paths of the vias further have ends protruding onto the second face of the insulating coating.
Abstract:
A first integrated circuit chip is assembled to a second integrated circuit chip with a back-to-back surface relationship. The back surfaces of the integrated circuit chips are attached to each other using one or more of an adhesive, solder or molecular bonding. The back surface of at least one the integrated circuit chips is processed to include at least one of a trench, a cavity or a saw cut.
Abstract:
An electronic device includes a first electronic component and a second electronic. Each electronic component includes a carrier substrate having a back side and a front side, an electronic chip including an integrated optical element, an overmolded transparent block encapsulating the electronic chip above the carrier substrate, and electrical connections between the electronic chip and electrical contacts of the carrier substrate. An overmolded grid encapsulates and holds the first and second electronic components. The grid is configured so that sides of the first and second electronic components are at least partially exposed.
Abstract:
An optoelectronic device includes an emitter of light rays and a receiver of light rays. The emitter is encapsulated within a first encapsulation layer, and the receiver is encapsulated within a second encapsulation layer. An opaque layer covers the first encapsulation layer (encapsulating the receiver) and covers the second encapsulation layer (encapsulating the emitter). The first and second encapsulation layers are separated by a region of opaque material. This opaque material may be provided by the opaque layer or an opaque fill.