Abstract:
A wireless power transmission apparatus according to various embodiments may comprise a plurality of patch antennas, a communication circuit, and a processor. The processor can be configured to perform a control to form an RF wave of a first beam width via the plurality of patch antennas, receive, from an electronic apparatus, via the communication circuit, sensing data for at least one of a movement of the electronic apparatus or an orientation of the electronic apparatus, and adjust a beam width of the RF wave formed by the plurality of patch antennas from the first beam width to a second beam width at least on the basis of the received sensing data.
Abstract:
An electronic device and method for transmitting and receiving a wireless power are provided. An electronic device for transmitting and receiving wireless power may include a resonator configured to operate, based on a plurality of operating modes of the electronic device including a power reception mode, a relay mode, and a power transmission mode, wherein: (i) in the power reception mode, the resonator is configured to receive power from a wireless power transmitter, (ii) in the relay mode, the resonator is configured to relay power received from the wireless power transmitter to a wireless power receiver, and (iii) in the power transmission mode, the resonator is configured to transmit power to the wireless power receiver; and a path controller configured to control at least one electrical pathway of electronic device based on the operating mode.
Abstract:
A wireless power transmission apparatus includes a source resonator configured to transmit an output power from which a harmonic component has been cancelled to a wireless power reception apparatus by resonating with a target resonator of the wireless power transmission apparatus, and a resonant power generator configured to differentially input a first input signal and a second input signal to the source resonator, and cancel the harmonic component of the output power.
Abstract:
A wireless power transmission apparatus includes a communicator configured to receive information associated with a reference power of a wireless power reception apparatus and information associated with a power measured at an input terminal of a direct current-to-direct current (DC/DC) converter of the wireless power reception apparatus, a controller configured to control an output power based on the information associated with the reference power and the information associated with the power measured, and a source resonator configured to transmit the output power to the wireless power reception apparatus by resonating with a target resonator.
Abstract:
A power transmitting unit (PTU) transmits a power wirelessly based on a location of a power receiving unit (PRU). The PTU determines whether the PRU is located within a charging area of the PTU based on frequency information corresponding to an inflection point detected on a curve of electrical characteristics of a resonator of the PTU.
Abstract:
An apparatus and a method for wireless power reception include converting a received wireless power to a wireless power for charging using a synchronous rectifier and a direct current/direct current (DC/DC) converter having a structure providing a high efficiency and low heat generation even when a high charging current is supplied.
Abstract:
An apparatus and a method for receiving power wirelessly, and an apparatus and a method for transmitting power wirelessly are provided. The apparatus for transmitting power wirelessly includes: a source resonator configured to transmit power wirelessly to a target resonator through a mutual resonance with the target resonator; a power supply unit configured to supply power to the source resonator; and a matching unit configured to connect a passive device to the power supply unit in series or in parallel to match an output impedance of the power supply unit and an input impedance of the source resonator.
Abstract:
An apparatus and a method for wirelessly receiving power, and an apparatus and a method for wirelessly transmitting power, are provided. A wireless power receiver includes a receiving unit configured to wirelessly receive a power, and a controller configured to control a length of a clock signal based on the power. The wireless power receiver further includes a modulator configured to change an impedance based on the length of the clock signal to perform load modulation.
Abstract:
A leakage magnetic field shielding apparatus includes a resonator configured to counterbalance a leakage magnetic field generated when a source resonator and a target resonator resonate at a resonant frequency of the source resonator and the target resonator.
Abstract:
A wireless charging apparatus includes a charging unit configured to transmit power wirelessly to a mobile device, and a power supply unit configured to supply power to the charging unit. The wireless charging apparatus further includes a connecting unit configured to connect the charging unit to the power supply unit such that a position and an angle of the charging unit are adjustable.