Abstract:
Methods and apparatuses schedule resources and identify resource scheduling in a MU MIMO wireless communication system. A method for identifying resource scheduling for a UE includes receiving downlink control information; identifying, from the downlink control information, one or more DM-RS ports assigned to the UE and a PDSCH EPRE to DM-RS EPRE ratio; and identifying data intended for the UE in a resource block in a downlink subframe using the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio. A method for scheduling resources includes identifying one or more DM-RS ports to assign to a UE and a PDSCH EPRE to DM-RS EPRE ratio for identifying data intended for the UE in a resource block in a downlink subframe; and including an indication of the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio in downlink control information.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
Methods and apparatuses indicate and identify quasi co-located reference signal ports. A method of identifying by a UE includes identifying, from downlink control information, a CSI-RS port that is quasi co-located with a DM-RS port assigned to the UE. The method includes identifying large scale properties for the assigned DM-RS port based on large scale properties for the CSI-RS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the DM-RS port. Another method for identifying by a UE includes identifying, from downlink control information, a CRS port that is quasi co-located with a CSI-RS port configured for the UE. The method includes identifying large scale properties for the configured CSI-RS port based on large scale properties for the CRS port. The method includes performing channel estimation and/or time/frequency synchronization using the identified large scale properties for the CSI-RS port.
Abstract:
A method for transmitting a CSI feedback report to a serving cell comprises for time division duplex, configuring at least one periodic CSI process with a CSI reference source defined by a single downlink subframe n−nCQI_ref, wherein nCQI_ref is a smallest value greater than or equal to a positive integer nCQI_ref_min, such that it corresponds to a valid downlink subframe, wherein nCQI_ref_min varies based on a number of at least one periodic CSI process. A method for CSI feedback reporting to a base station comprises configuring not to accommodate, by a user equipment, the one or more aperiodic CSI requests arrived from a serving cell except a CSI request of CSI processes with lower indexes for each serving cell, wherein a number of the one or more CSI processes with a lower index (es) is determined based on a number of pending CSI reports.
Abstract:
For use in a wireless network, a method for scheduling a Downlink Pilot Time Slot (DwPTS) subframe is provided. The method comprises expanding Physical Resource Blocks (PRBs) in a subframe prior to a DwPTS subframe to include resource elements (REs) of the DwPTS subframe, a number of OFDM symbols of the DwPTS subframe being less than or equal to a threshold OFDM symbol number. The method further comprises facilitating for a UE to demodulate REs in a DwPTS subframe based on DeModulation Reference Signals (DMRS) transmitted in a downlink subframe prior to the DwPTS subframe.
Abstract:
Methods and apparatuses determine and indicate QCL behavior for or to a UE. A method for determining QCL behavior for the UE method includes, when configured in TM10 for a serving cell, determining whether a CRC for a PDSCH transmission scheduled by DCI format 1A is scrambled using a C-RNTI. The method also includes, in response to determining C-RNTI scrambling, determining whether a transmission scheme of the PDSCH transmission uses a non-MBSFN subframe configuration and whether the PDSCH transmission is transmitted on antenna port 0 or a TxD scheme is used. The method further includes, in response to determining the non-MBSFN subframe configuration and antenna port 0 or the TxD scheme being used, determining to use QCL behavior 1 for PDSCH reception. Additionally, the method includes, in response to determining a MBSFN subframe configuration and antenna port 7 being used, determining to use QCL behavior 2 for PDSCH reception.
Abstract:
A method for CSI report transmission includes detecting a collision in a subframe, between a first PUCCH CSI report of one serving cell with which a UE is configured in one of transmission modes 1 to 9, and a second PUCCH CSI report of another serving cell with which the UE is configured in transmission mode 10. Upon the reporting types of the collided PUCCH CSI reports having a same priority, the method transmits the first PUCCH CSI report if the CSI process index of the second PUCCH CSI report has a positive value other than 1. A method for CSI report transmission includes configuring, via a higher layer, a UE configured in transmission mode 10 whether to create a respective CSI report(s) for each aperiodic CSI process or not, using an information element including at least three one-bit variables.
Abstract:
Methods and apparatus of a base station (BS) communicating with a user equipment (UE) are provided. The BS transmits N channel state information reference signal (CSI-RS) on N CSI-RS antenna ports, which is received by the UE. A transmission mode is configured that supports coordinated multi-point (COMP) transmissions. A channel quality information (CQI) feedback configuration requires CQI feedback without a precoding matrix index (PMI) and without a rank indicator (RI). The BS receives a CQI transmitted by the UE, which is in accordance with the CQI feedback configuration. If N is one, the CQI is calculated on a single antenna port, antenna port 7, and the single antenna port is mapped from the N equals one CSI-RS antenna port.
Abstract:
A user equipment (UE) is configured to determine channel quality information (CQI) in a wireless communication system. The UE includes a processor configured to receive from an eNodeB (eNB) signaling parameters related to a first co-channel precoding matrix indicator (PMI) codebook, determine a second co-channel PMI based on a determined single user PMI (SU-PMI) and the received signaling parameters related to the first co-channel PMI codebook, determine a multi-user CQI (MU-CQI) based on the second co-channel PMI, and transmit the MU-CQI to the eNB.