Abstract:
An image decoding method including: determining whether image data of a base layer, which is encoded according to a first codec, is decodable according to a second codec; and decoding the image data of the base layer based on a result of the determining, wherein the image data includes image data of an enhancement layer, which is encoded according to the first codec.
Abstract:
Provided are a method and apparatus for decoding a multi-layer video, and a method and apparatus for encoding a multi-layer video. The method includes obtaining a NAL unit including encoding information and type information of a first layer picture and identifying a type of the first layer picture, obtaining a NAL unit including encoding information and type information of a second layer picture and identifying a type of the second layer picture that is set to be the same as the type of the first layer picture having a same POC as the second layer picture, and decoding the first layer picture and the second layer picture based on the identified first layer picture type and the identified second layer picture type.
Abstract:
Methods and apparatuses for arithmetic encoding/decoding of video data. The arithmetic decoding method includes arithmetically decoding prefix bit strings representing a two-dimensional location of a last significant coefficient in a block sequentially by using a context model, arithmetically decoding suffix bit strings in a bypass mode, and performing inverse binarization on the arithmetically decoded prefix bit strings and suffix bit strings to acquire the location of the last significant coefficient in the block.
Abstract:
Provided are scalable video encoding and decoding methods. The scalable video encoding method includes: obtaining a peripheral pixel of an enhancement block based on a peripheral pixel of a base layer block corresponding to the enhancement layer block to be prediction-encoded, and performing intra prediction on the enhancement layer block by using at least one of a peripheral pixel of the enhancement layer block that is encoded before the enhancement layer block and then restored and a peripheral pixel of the enhancement layer block that is obtained based on a peripheral pixel of the base layer block.
Abstract:
Disclosed is a response inference method and apparatus. The response inference apparatus obtains an input, generates a latent variable vector in a latent variable region space partitioned into regions corresponding to a plurality of responses by encoding the input, and generates an output response corresponding to a region from among the regions of the latent variable vector by decoding the latent variable vector.
Abstract:
An video decoding apparatus including a parser which obtains bit strings corresponding to current transformation coefficient level information by arithmetic decoding a bitstream based on a context model; a parameter determiner which determines a current binarization parameter by updating or maintaining a previous binarization parameter based on a comparison of a threshold and a size of a previous transformation coefficient; a syntax element restorer which obtains the current transformation coefficient level information by performing de-binarization of the bit strings using the determined current binarization parameter and generates a size of a current transformation coefficient using the current transformation coefficient level information, wherein the current binarization parameter has a value equal to or smaller than a predetermined value.
Abstract:
The present disclosure relates to signaling of sample adaptive offset (SAO) parameters determined to minimize an error between an original image and a reconstructed image in video encoding and decoding operations. An SAO decoding method includes obtaining context-encoded leftward SAO merge information and context-encoded upward SAO merge information from a bitstream of a largest coding unit (MCU); obtaining SAO on/off information context-encoded with respect to each color component, from the bitstream; if the SAO on/off information indicates to perform SAO operation, obtaining absolute offset value information for each SAO category bypass-encoded with respect to each color component, from the bitstream; and obtaining one of band position information and edge class information bypass-encoded with respect to each color component, from the bitstream.
Abstract:
Provided are methods and apparatuses for encoding and decoding an image. The method of encoding includes: determining a maximum size of a buffer to decode each image frame by a decoder, a number of image frames to be reordered, and latency information of an image frame having a largest difference between an encoding order and a display order from among image frames that form an image sequence, based on an encoding order the image frames that form the image sequence, an encoding order of reference frames referred to by the image frames, a display order of the image frames, and a display order of the reference frames; and adding, to a mandatory sequence parameter set, a first syntax indicating the maximum size of the buffer, a second syntax indicating the number of image frames to be reordered, and a third syntax indicating the latency information.
Abstract:
Provided is a method for adaptively compressing image data. A refresh rate and a compression rate of the image data are determined based on motion information of the image data, and the image data are compressed based on the determined refresh rate and compression rate.
Abstract:
Disclosed are methods for coding and decoding a multilayer video. The method for decoding a multilayer comprise: decoding a first layer picture and saving same to a decoded picture buffer (DPB); marking the first layer picture as a short-term reference picture; obtaining interlayer RPS information of a second layer picture which has a first POC identical to that of the first layer picture and which is interlayer-predicted by referencing the first layer picture; marking the first layer picture which has been marked as the short-term reference picture as a long-term reference picture, based on the interlayer RPS information; and performing interlayer prediction with respect to the second layer picture by referencing the first layer picture which has been marked as the long-term reference picture.