Abstract:
In chemical mechanical polishing, a substrate is planarized with one or more fixed-abrasive polishing pads. Then the substrate is polished with a standard polishing pad to remove scratch defects created by the fixed-abrasive polishing pads.
Abstract:
An electrostatic chuck (20) for holding a substrate (75) comprises (i) a base (80) having an upper surface (95) with grooves (85) therein, the grooves (85) sized and distributed for holding coolant for cooling a substrate (75), and (ii) a substantially continuous insulator film (45) conformal to the grooves (85) on upper surface (95) of the base (80). The base (80) can be electrically conductive and capable of serving as the electrode (50) of the chuck (20), or the electrode (50) can be embedded in the insulator film (45). The insulator film (45) has a dielectric breakdown strength sufficiently high that when a substrate (75) placed on the chuck (20) and electrically biased with respect to the electrode (50), electrostatic charge accumulates in the substrate (75) and in the electrode (50) forming an electrostatic force that attracts and holds the substrate (75) to the chuck (20). Preferably the chuck (20) is fabricated using a pressure forming process, and more preferably using a pressure differential process.
Abstract:
A process for removing deposits from within a space at least partially delimited by a surface which is subject to attack from a plasma includes the steps of placing on the surface a cover comprising a material which is inert to the plasma, and then removing the deposits.
Abstract:
A semiconductor wafer processing system for processing wafers from a wafer storage cassette includes a wafer transfer chamber; a wafer storage elevator within the transfer chamber; one or more wafer processing chambers; and a wafer transfer apparatus for transferring a wafer between a standard storage cassette adjacent and outside the transfer chamber and the elevator, and between the elevator and the processing chamber. The storage chamber pressure varies between atmospheric when accepting wafers from outside, and a subatmospheric pressure when transferring wafers to or from a processing chamber. The transfer apparatus includes a robot arm; a thin flat wafer carrying blade at the leading end of the robot arm configured for engaging a wafer from the storage cassette or the elevator; and a wafer support tray configured for removable engagement with the blade and for engaging and positively positioning a wafer from the elevator, or a support pedestal within a processing chamber. When the transfer apparatus moves a wafer between the elevator and a processing chamber in an evacuated environment, the tray is engaged with the blade and helps retain the wafer during transit. When wafers are transferred between the cassette and the elevator at atmospheric pressure the tray is disengaged from the blade and placed in a rest position on the elevator, and the wafer transfer is performed by means of the blade alone with a vacuum pick integral to the blade. The blade includes upper and lower halves together defining vacuum channels and capacitive position sensors.
Abstract:
A semiconductor wafer processing system for processing wafers from a wafer storage cassette includes a wafer transfer chamber; a wafer storage elevator within the transfer chamber; one or more wafer processing chambers; and a wafer transfer apparatus for transferring a wafer between a standard storage cassette adjacent and outside the transfer chamber and the elevator, and between the elevator and the processing chamber. The storage chamber pressure varies between atmospheric when accepting wafers from outside, and a subatmospheric pressure when transferring wafers to or from a processing chamber. The transfer apparatus includes a robot arm; a thin flat wafer carrying blade at the leading end of the robot arm configured for engaging a wafer from the storage cassette or the elevator; and a wafer support tray configured for removable engagement with the blade and for engaging and positively positioning a wafer from the elevator, or a support pedestal within a processing chamber. When the transfer apparatus moves a wafer between the elevator and a processing chamber in an evacuated enviroment, the tray is engaged with the blade and helps retain the wafer during transit. When wafers are transferred between the cassette and the elevator at atmospheric pressure the tray is disengaged from the blade and placed in a rest position on the elevator, and the wafer transfer is performed by means of the blade alone with a vacuum pick integral to the blade. The blade includes upper and lower halves together defining vacuum channels and capacitive position sensors.
Abstract:
A semiconductor wafer processing system for processing wafers from a wafer storage cassette includes a wafer transfer chamber; a wafer storage elevator within the transfer chamber; one or more wafer processing chambers; and a wafer transfer apparatus for transferring a wafer between a standard storage cassette adjacent and outside the transfer chamber and the elevator, and between the elevator and the processing chamber. The environment of the storage chamber varies in pressure between atmospheric when accepting wafers from outside, and a subatmospheric pressure when transferring wafers to or from a processing chamber. The transfer apparatus includes a robot arm; a thin flat wafer carrying blade at the leading end of the robot arm and configured for engaging a wafer from the storage cassette or the elevator; and a wafer support tray which is configured for removable engagement with the blade and for engaging and positively positioning a wafer from the elevator, or a support pedestal within a processing chamber. When the transfer apparatus moves a wafer between the elevator and a processing chamber in an evacuated environment, the tray is engaged with the blade and helps retain the wafer during transit. When wafers are transferred between the cassette and the elevator at atmospheric pressure the tray is disengaged from the blade and placed in a rest position on the elevator, and the wafer transfer is performed by means of the blade alone with a vacuum pick integral to the blade. The blade includes upper and lower halves together defining vacuum channels and capacitive position sensors.
Abstract:
A process and apparatus is described for depositing a layer of material over the entire frontside surface of a semiconductor wafer without leaving residues on the backside of said wafer. A semiconductor wafer is placed on the surface of a first wafer support without contacting the frontside surface of the wafer to thereby permit access by deposition materials to the entire frontside surface of the wafer, and then a layer of material is deposited on the entire frontside surface of the semiconductor wafer. To remove any deposits formed on the backside of the wafer during such a deposition, the coated wafer is then placed generally coaxially on the surface of a generally circular second wafer support which will permit access to the outermost portions of the backside of the wafer. In one embodiment the second wafer support is provided with an annular groove coaxially formed in the surface of the second wafer support which faces the backside of the wafer. This annular groove has an outer diameter larger than the diameter of the wafer and an inner diameter smaller than the outer diameter of that portion of the backside of the wafer not containing deposits thereon from the deposition step, so that all of the backside surface containing such depositions is exposed by the groove. The wafer is then etched to remove from the backside any materials deposited thereon during the deposition step, by permitting etchant materials to contact such backside deposits through the annular groove formed in the second wafer support.
Abstract:
An integrated modular multiple chamber vacuum processing system is disclosed. The system includes a load lock, may include an external cassette elevator, and an internal load lock wafer elevator, and also includes stations about the periphery of the load lock for connecting one, two or several vacuum process chambers to the load lock chamber. A robot is mounted within the load lock and utilizes a concentric shaft drive system connected to an end effector via a dual four-bar link mechanism for imparting selected R-.theta. movement to the blade to load and unload wafers at the external elevator, internal elevator and individual process chambers. The system is uniquely adapted for enabling various types of IC processing including etch, deposition, sputtering and rapid thermal annealing chambers, thereby providing the opportunity for multiple step, sequential processing using different processes.
Abstract:
A magnetically-enhanced, variable magnetic field, RIE mode plasma etch process for etching materials such as dielectrics and polycrystalline, is disclosed. The variable magnetic field permits optimization of selected characteristics such as etch rate, etch selectivity, ion bombardment and radiation damage, etch uniformity, and etch anisotropy.
Abstract:
Methods are provided for forming a circuit component on a workpiece substrate. The methods comprise the steps of depositing a dielectric material over the substrate; etching a pattern through the dielectric material to expose a portion of the substrate; depositing a barrier metal over the dielectric material and the exposed portion of the substrate; depositing a conductive metal over the barrier metal, the deposited conductive metal having a thickness sufficient to fill the etched pattern; planarizing the conductive metal to form a planar metal layer; and polishing the metal layer and the barrier metal in a single polishing step using an abrasive-free polish until the dielectric material surrounding the pattern is exposed.