摘要:
A method of forming an isolated tri-gate semiconductor body comprises patterning a bulk substrate to form a fin structure, depositing an insulating material around the fin structure, recessing the insulating material to expose a portion of the fin structure that will be used for the tri-gate semiconductor body, depositing a nitride cap over the exposed portion of the fin structure to protect the exposed portion of the fin structure, and carrying out a thermal oxidation process to oxidize an unprotected portion of the fin structure below the nitride cap. The oxidized portion of the fin isolates the semiconductor body that is being protected by the nitride cap. The nitride cap may then be removed. The thermal oxidation process may comprise annealing the substrate at a temperature between around 900° C. and around 1100° C. for a time duration between around 0.5 hours and around 3 hours.
摘要:
A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
An integrated circuit and method for making it are described. The integrated circuit includes a first insulating layer formed on a substrate and a body strap of a first conductivity type that is formed on the first insulating layer. A second insulating layer is formed on the first insulating layer adjacent to the body strap and a film is formed on the second insulating layer. The integrated circuit also includes a gate electrode formed on the film. A plurality of doped regions of a second conductivity type are formed within the film that extend from the surface of the film to the surface of the second insulating layer. The doped regions have junctions that are each spaced from the body strap by at least about 500 angstroms.
摘要:
A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
A junctionless accumulation-mode (JAM) semiconductive device is isolated from a semiconducive substrate by a reverse-bias band below a prominent feature of a JAM semiconductive body. Processes of making the JAM device include implantation and epitaxy.
摘要:
A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
A nonplanar semiconductor device and its method of fabrication is described. The nonplanar semiconductor device includes a semiconductor body having a top surface opposite a bottom surface formed above an insulating substrate wherein the semiconductor body has a pair laterally opposite sidewalls. A gate dielectric is formed on the top surface of the semiconductor body on the laterally opposite sidewalls of the semiconductor body and on at least a portion of the bottom surface of semiconductor body. A gate electrode is formed on the gate dielectric, on the top surface of the semiconductor body and adjacent to the gate dielectric on the laterally opposite sidewalls of semiconductor body and beneath the gate dielectric on the bottom surface of the semiconductor body. A pair source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
摘要:
Embodiments include apparatuses, methods, and systems for a circuit to shift a voltage level. The circuit may include a first inverter that includes a first transistor coupled to pass a low voltage signal and a second inverter coupled to receive the low voltage signal. The circuit may further include a second transistor coupled to receive the low voltage signal from the second inverter to serve as a feedback device and produce a high voltage signal. In embodiments, the first transistor conducts asymmetrically to prevent crossover of the high voltage signal into the low voltage domain. A low voltage memory array is also described. In embodiments, the circuit to shift a voltage level may assist communication between a logic component including the low voltage memory array of a low voltage domain and a logic component of a high voltage domain. Additional embodiments may also be described.