摘要:
A method (and semiconductor device) of fabricating a semiconductor device eliminates shallow trench isolation (STI) recess in embedded SiGe p-type field effect transistor (pFET) structures. This increases device performance by improving isolation and decreasing leakage current caused by SiGe facet growth and silicide encroachment at the STI. A mask is selectively formed over the STI and adjacent nFET regions to protect them during formation (e.g., reactive ion etching (RIE)) of the embedded source/drain (S/D) regions of the pFET. The mask also extends over the STI edge by a predetermined distance to cover a portion of the embedded S/D region disposed between the STI and gate structure. This helps protect or isolate the STI region during SiGe layer formation in the defined embedded S/D regions.
摘要:
An integrated circuit system that includes: providing a PFET device including a doped epitaxial layer; and forming a source/drain extension by employing an energy source to diffuse a dopant from the doped epitaxial layer.
摘要:
A first example embodiment comprises the following steps and the structure formed therefrom. A trench having opposing sidewalls is formed within a substrate. A stress layer having an inherent stress is formed over the opposing trench sidewalls. The stress layer having stress layer sidewalls over the trench sidewalls. Ions are implanted into one or more portions of the stress layer to form ion-implanted relaxed portions with the portions of the stress layer that are not implanted are un-implanted portions, whereby the inherent stress of the one or more ion-implanted relaxed portions of stress layer portions is relaxed.
摘要:
The electrical performance enhancing effects of inducing strain in semiconductor devices is made substantially uniform across a substrate having a varying population density of device components by selectively spacing apart the strain-inducing structures from the effected regions of the semiconductor devices depending upon the population density of device components. Differing separation distances are obtained by selectively forming sidewall spacers on device components, such as MOS transistor gate electrodes, in which the sidewall spacers have a relatively small width in regions having a relatively high density of device components, and a relatively larger width in regions having a relatively low density of device components. By varying the separation distance of strain-inducing structures from the effected components, uniform electrical performance is obtained in the various components of the devices in an integrated circuit regardless of the component population density.
摘要:
A process for fabricating a semiconductor device, such as a strained-channel transistor, includes forming epitaxial regions in a substrate in proximity to a gate electrode in which the surface profile of the epitaxial regions is defined by masking sidewall spacers adjacent the gate electrode. The epitaxial regions are formed by depositing an epitaxial material into cavities selectively etched into the semiconductor substrate on either side of the gate electrode. The masking sidewall spacers limit the thickness of the epitaxial deposited material in proximity of the gate electrode, such that the upper surface of the epitaxial material is substantially the same as the principal surface of the semiconductor substrate. Doped regions are formed in the channel region beneath the gate electrode using an angled ion beam, such that doping profiles of the implanted regions are substantially unaffected by surface irregularities in the epitaxially-deposited material.
摘要:
An integrated circuit system that includes: providing a PFET device including a PFET gate and a PFET gate dielectric; forming a source/drain extension from a first epitaxial layer aligned to a first PFET gate sidewall spacer; and forming a source/drain from a second epitaxial layer aligned to a second PFET gate sidewall spacer.
摘要:
A circuit having a circuit control terminal, a primary circuit and a protection circuit is provided. The primary circuit includes a primary control terminal and a primary gate oxide of a thickness T1. The primary control terminal is coupled to the circuit control terminal. The protection circuit having a protection control terminal is coupled to the primary circuit. The protection circuit includes a protection gate oxide of a second thickness T2 which is less than T1. The protection gate oxide reduces plasma induced damage in the primary circuit.
摘要:
A first example embodiment comprises the following steps and the structure formed therefrom. A trench having opposing sidewalls is formed within a substrate. A stress layer having an inherent stress is formed over the opposing trench sidewalls. The stress layer having stress layer sidewalls over the trench sidewalls. Ions are implanted into one or more portions of the stress layer to form ion-implanted relaxed portions with the portions of the stress layer that are not implanted are un-implanted portions, whereby the inherent stress of the one or more ion-implanted relaxed portions of stress layer portions is relaxed.
摘要:
An integrated circuit system that includes: providing a PFET device including a PFET gate and a PFET gate dielectric; forming a source/drain extension from a first epitaxial layer aligned to a first PFET gate sidewall spacer; and forming a source/drain from a second epitaxial layer aligned to a second PFET gate sidewall spacer.
摘要:
Some example embodiments of the invention provide a method to improve the performance of MOS devices by increasing the stress in the channel region. An example embodiment for a NMOS transistor is to form a tensile stress layer over a NMOS transistor. A heavy ion implantation is performed into the stress layer and then an anneal is performed. This increases the amount of stress from the stress layer that the gate retains/memorizes thereby increasing device performance.