Abstract:
In an embodiment, movement-data is gathered with one or more sensors (e.g., accelerometers, GPS receivers, etc.) during a driver's driving session. A score may be calculated for the driving session, and the driver's progress is evaluated by a driver-evaluation system. A driving session report or graphical user-interface (GUI) is generated with a computer processor and displayed at a display device. The displayed report or GUI includes a graphic representing the driver's progress relative to historical data.
Abstract:
The method, system, and computer-readable medium facilitates monitoring one or more eyes of a vehicle operator during a driving session to generate a plurality of gaze location logs with gaze location values and timestamps. The gaze location value may be generated by determining a focal point of the vehicle operator's gaze, determining which of a plurality of areas of the vehicle is associated with the focal point, and assigning the gaze location value based on the area of the vehicle associated with the focal point. The gaze location logs may be analyzed to determine the duration of the vehicle operator's gaze at each area of the vehicle. Based on the duration of the vehicle operators gaze, recommendations to improve vehicle operator performance may be determined and communicated to the vehicle operator.
Abstract:
A method includes receiving data about potential impairment of a vehicle operator, wherein the data about potential impairment is generated by: (i) a first optical sensor monitoring a vehicle operator, and (ii) a second optical sensor monitoring an environment ahead of a vehicle operated by the vehicle operator. The computer-implemented method further includes assigning a plurality of scores based on the data about potential vehicle operator impairment, wherein each of the plurality of scores corresponds to a respective impairment indicator, determining an impairment score by performing a mathematical operation on the plurality of scores, and providing the impairment score to a remote device configured to alert the vehicle operator based on the impairment score.
Abstract:
Systems and methods for providing an aspirational safe driving incentive to drivers having the propensity or ability to improve high risk driving behaviors are provided. Drivers exhibiting high risk driving behaviors may be identified, and initial vehicle telematics data associated with each of the drivers may be collected and analyzed in order to determine which drivers have propensity or ability to improve their high risk driving behaviors. These candidate drivers may receive a probationary safe driving incentive along with feedback configured to improve the drivers' high risk driving behaviors. Updated vehicle telematics data associated with each candidate driver may be collected in order to evaluate an extent to which each candidate driver has improved his or her high risk driving behaviors. Accordingly, a candidate driver's probationary safe driving incentive may be modified or maintained based on the extent to which the candidate has improved upon high risk driving behaviors.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).
Abstract:
Systems and methods are provided for dynamically protecting transportable articles in vehicles. A system for dynamically protecting a transportable article in a vehicle may include one or more processors and non-volatile memory storing instructions. The instructions, when executed by the one or more processors, cause the system to determine at least one of a characteristic or a trait of the transportable article; detect, based on sensed data, an emergency condition; select one or more article protection components based on (i) the at least one of the characteristic or the trait of the transportable article, and (ii) the detected emergency condition; and in response to detecting the emergency condition, deploy the selected one or more article protection components to protect the transportable article.
Abstract:
In a network of autonomous or semi-autonomous vehicles, an alert may be triggered when one of the vehicles switches from autonomous to manual mode. The alert may be communicated to nearby autonomous vehicles so that drivers of those vehicles may become aware of a potentially unpredictable manual driver nearby. Drivers of autonomous vehicles who may have become disengaged (e.g., sleeping, reading, talking, etc.) during autonomous driving may become re-engaged upon noticing the alert. A re-engaged driver may choose to switch his/her own vehicle from autonomous to manual mode in order to appropriately react to an unpredictable nearby manual driver. In additional or alternative embodiments, the alert may be triggered or intensified when indications of impairment of a nearby driver or malfunction of a nearby vehicle are detected.
Abstract:
In a network of autonomous or semi-autonomous vehicles, an alert may be triggered when one of the vehicles switches from autonomous to manual mode. The alert may be communicated to nearby autonomous vehicles so that drivers of those vehicles may become aware of a potentially unpredictable manual driver nearby. Drivers of autonomous vehicles who may have become disengaged (e.g., sleeping, reading, talking, etc.) during autonomous driving may become re-engaged upon noticing the alert. A re-engaged driver may choose to switch his/her own vehicle from autonomous to manual mode in order to appropriately react to an unpredictable nearby manual driver. In additional or alternative embodiments, the alert may be triggered or intensified when indications of impairment of a nearby driver or malfunction of a nearby vehicle are detected.
Abstract:
Systems and methods are provided for dynamically protecting transportable articles in vehicles. A system for dynamically protecting a transportable article in a vehicle may include one or more processors and non-volatile memory storing instructions. The instructions, when executed by the one or more processors, cause the system to determine at least one of a characteristic or a trait of the transportable article; detect, based on sensed data, an emergency condition; select one or more article protection components based on (i) the at least one of the characteristic or the trait of the transportable article, and (ii) the detected emergency condition; and in response to detecting the emergency condition, deploy the selected one or more article protection components to protect the transportable article.
Abstract:
An alert may be triggered to notify a pedestrian of the current operational mode of a nearby vehicle. For instance, a vehicle may operate in an autonomous or manual mode, and may occasionally switch from one mode to the other. A pedestrian who may be unaware of the current operational mode of a nearby vehicle may notice the alert and proceed accordingly. In one embodiment, an indication of the current operational mode of the nearby vehicle may be transmitted to an electronic device associated with the pedestrian. The device may generate a notification to the pedestrian based on the current operational mode. In an additional or alternative embodiment, the alert may be transmitted by the vehicle externally to be visible or audible to the pedestrian. In some embodiments, the alert may be triggered only for particular operational modes (e.g., only for autonomous or only for manual).