Abstract:
A structure and a formation method of a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device also includes a gate stack covering a portion of the fin structure and an epitaxially grown source/drain structure over the fin structure and adjacent to the gate stack. The semiconductor device further includes a semiconductor protection layer over the epitaxially grown source/drain structure. The semiconductor protection layer has an atomic concentration of silicon greater than that of the epitaxially grown source/drain structure.
Abstract:
A structure and a formation method of a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device also includes a gate stack covering a portion of the fin structure and an epitaxially grown source/drain structure over the fin structure and adjacent to the gate stack. The semiconductor device further includes a semiconductor protection layer over the epitaxially grown source/drain structure. The semiconductor protection layer has an atomic concentration of carbon greater than that of the epitaxially grown source/drain structure.
Abstract:
An image sensor device and a manufacturing method for forming an image sensor device are provided. The image sensor device includes a semiconductor substrate having an array region and a periphery region. The image sensor device also includes a light sensing region in the array region of the semiconductor substrate. The image sensor device further includes a dielectric structure over the array region and the periphery region, and the dielectric structure has a substantially planar top surface. In addition, the image sensor device includes a recess in the dielectric structure and substantially aligned with the light sensing region. The image sensor device also includes a filter in the recess and a light blocking grid in the dielectric structure and surrounding a portion of the filter.
Abstract:
The disclosure provides an image sensor device and a manufacturing method. The image sensor device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The image sensor device also includes a light blocking structure in the semiconductor substrate and adjacent to the light sensing region. A sidewall of the light blocking structure is a curved surface.
Abstract:
In a method for manufacturing a dual shallow trench isolation structure, a substrate is provided, and a mask layer is formed on the substrate. The mask layer is patterned by using a photomask to form at least one first hole and at least one second hole in the mask layer, in which a depth of the at least one first hole is different from a depth of the at least one second hole. The mask layer and the substrate are etched to form at least one first trench having a first depth and at least one second trench having a second depth, in which the first depth is different from the second depth. The remaining mask layer is removed. A first isolation layer and A second isolation layer are respectively formed in the at least one first trench and the at least one second trench.
Abstract:
An image sensor includes a substrate, a first photosensitive unit, a second photosensitive unit, a buffer layer, a dielectric grid, a first color filter, and a second color filter. The first photosensitive unit and the second photosensitive unit are in the substrate. The buffer layer covers the substrate, the first photosensitive unit and the second photosensitive unit. The dielectric grid is over the buffer layer and between the first photosensitive unit and the second photosensitive unit. The dielectric grid has a round top surface. The first color filter is over the first photosensitive unit. The first color filter is in contact with the round top surface and the buffer layer. The second color filter is over the second photosensitive unit.
Abstract:
A structure and a formation method of a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device also includes a gate stack covering a portion of the fin structure and an epitaxially grown source/drain structure over the fin structure and adjacent to the gate stack. The semiconductor device further includes a semiconductor protection layer over the epitaxially grown source/drain structure. The semiconductor protection layer has an atomic concentration of silicon greater than that of the epitaxially grown source/drain structure.
Abstract:
A backside illuminated image sensor device with a shielding layer and a manufacturing method thereof are provided. In the backside illuminated image senor device, a patterned conductive shielding layer is formed on a dielectric layer on a backside surface of a semiconductor substrate and surrounding a pixel array on a front side surface of the semiconductor substrate.
Abstract:
A device includes a FinFET on a first region of a substrate and a planar-FET on a second region of the substrate. The FinFET includes a FinFET source region, a FinFET drain region, and a FinFET gate between the FinFET source region and the FinFET drain region. The planar-FET includes a planar-FET source region, a planar-FET drain region, and a planar-FET gate between the planar-FET source region and the planar-FET drain region. A bottommost position of the FinFET source region is lower than a bottommost position of the planar-FET source region.
Abstract:
A structure and a formation method of a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and a fin structure over the semiconductor substrate. The semiconductor device also includes a gate stack covering a portion of the fin structure and an epitaxially grown source/drain structure over the fin structure and adjacent to the gate stack. The semiconductor device further includes a semiconductor protection layer over the epitaxially grown source/drain structure. The semiconductor protection layer has an atomic concentration of silicon greater than that of the epitaxially grown source/drain structure.