摘要:
Conductive paths in an integrated circuit are formed using multiple undifferentiated carbon nanotubes embedded in a conductive metal, which is preferably copper. Preferably, conductive paths include vias running between conductive layers. Preferably, composite vias are formed by forming a metal catalyst pad on a conductor at the via site, depositing and etching a dielectric layer to form a cavity, growing substantially parallel carbon nanotubes on the catalyst in the cavity, and filling the remaining voids in the cavity with copper. The next conductive layer is then formed over the via hole.
摘要:
A method for synthesizing carbon nanotubes and structure formed thereby. The method includes forming carbon nanotubes on a plurality of synthesis sites supported by a first substrate, interrupting nanotube synthesis, mounting a free end of each carbon nanotube to a second substrate, and removing the first substrate. Each carbon nanotube is capped by one of the synthesis sites, to which growth reactants have ready access. As the carbon nanotubes lengthen during resumed nanotube synthesis, access to the synthesis sites remains unoccluded.
摘要:
The invention provides a method of forming a phase shift mask and the resulting phase shift mask. The method forms a non-transparent film on a transparent substrate and patterns an etch stop layer on the non-transparent film. The invention patterns the non-transparent film using the etch stop layer to expose areas of the transparent substrate. Next, the invention forms a mask on the non-transparent film to protect selected areas of the transparent substrate and forms a phase shift oxide on exposed areas of the transparent substrate. Subsequently, the mask is removed and the phase shift oxide is polished down to the etch stop layer, after which the etch stop layer is removed.
摘要:
A method for fabricating a metal-oxide-semiconductor device structure. The method includes introducing a dopant species concurrently into a semiconductor active layer that overlies an insulating layer and a gate electrode overlying the semiconductor active layer by ion implantation. The thickness of the semiconductor active layer, the thickness of the gate electrode, and the kinetic energy of the dopant species are chosen such that the projected range of the dopant species in the semiconductor active layer and insulating layer lies within the insulating layer and a projected range of the dopant species in the gate electrode lies within the gate electrode. As a result, the semiconductor active layer and the gate electrode may be doped simultaneously during a single ion implantation and without the necessity of an additional implant mask.
摘要:
Novel semiconductor structures and methods are disclosed for forming a buried recombination layer underneath the bulk portion of a hybrid orientation technology by implanting at least one recombination center generating element to reduce single event upset rates in CMOS devices thereabove. The crystalline defects in the buried recombination layer caused by the recombination center generating elements are not healed even after a high temperature anneal and serve as recombination centers where holes and electrons generated by ionizing radiation are collected by. Multiple buried recombination layers may be formed. Optionally, one such layer may be biased with a positive voltage to prevent latchup by collecting electrons.
摘要:
A semiconductor structure and associated method for forming the semiconductor structure. The semiconductor structure comprises a first field effect transistor (FET), a second FET, and a shallow trench isolation (STI) structure. The first FET comprises a channel region formed from a portion of a silicon substrate, a gate dielectric formed over the channel region, and a gate electrode comprising a bottom surface in direct physical contact with the gate dielectric. A top surface of the channel region is located within a first plane and the bottom surface of the gate electrode is located within a second plane. The STI structure comprises a conductive STI fill structure. A top surface of the conductive STI fill structure is above the first plane by a first distance D1 and is above the second plane by a second distance D2 that is less than D1.
摘要:
A dielectric in an integrated circuit is formed by creating oriented cylindrical voids in a conventional dielectric material. Preferably, voids are formed by first forming multiple relatively long, thin carbon nanotubes perpendicular to a surface of an integrated circuit wafer, depositing a conventional dielectric on the surface surrounding the carbon nanotubes, and then removing the carbon nanotubes to produce the voids. A layer of dielectric and voids thus formed can be patterned or otherwise processed using any of various conventional processes. Recesses formed in the dielectric for conductors are lined with a non-conformal dielectric film to seal the voids. The use of a conventional dielectric material having numerous air voids substantially reduces the dielectric constant, leaving a dielectric structure which is both structurally strong and can be constructed compatibly with conventional processes and materials.
摘要:
Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises first and second adjacent doped wells formed in the semiconductor material of a substrate. A trench, which includes a base and first sidewalls between the base and the top surface, is defined in the substrate between the first and second doped wells. The trench is partially filled with a conductor material that is electrically coupled with the first and second doped wells. Highly-doped conductive regions may be provided in the semiconductor material bordering the trench at a location adjacent to the conductive material in the trench.
摘要:
Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
摘要:
Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The structure comprises a first doped well formed in a substrate of semiconductor material, a second doped well formed in the substrate proximate to the first doped well, and a deep trench defined in the substrate. The deep trench includes sidewalls positioned between the first and second doped wells. A buried conductive region is defined in the semiconductor material bordering the base and the sidewalls of the deep trench. The buried conductive region intersects the first and second doped wells. The buried conductive region has a higher dopant concentration than the first and second doped wells. The buried conductive region may be formed by solid phase diffusion from a mobile dopant-containing material placed in the deep trench. After the buried conductive region is formed, the mobile dopant-containing material may optionally remain in the deep trench.