摘要:
A memory cell structure for a memory device includes a read transistor having a floating gate node, a tunnelling capacitor, and a coupling capacitor stack. The tunnelling capacitor is connected to the floating gate node and has a first programming terminal, and the coupling capacitor stack is connected to the floating gate node and has a second programming terminal. The coupling capacitor stack includes at least two coupling capacitors arranged in series between the floating gate node and the second programming terminal, with the coupling capacitor stack having a larger capacitance than the tunnelling capacitor. Such a memory cell structure is efficient in terms of area, and can be manufactured using standard CMOS logic manufacturing processes, thereby avoiding some of the complexities involved in the production of conventional EEPROM and Flash memory devices.
摘要:
A memory cell 36 within an integrated circuit memory is provided with an access controller 32 coupled to a first pass gate 38 and a second pass gate 40. During a write access to the memory cell 38 both the first pass gate 38 and the second pass gate 40 are opened. During a read access, the first pass gate 38 is opened and the second pass gate 40 is closed. This asymmetry in the read and write operations permits an asymmetry in the gates forming the memory cell 36 thereby permitting changes to increase both read robustness and write robustness. The asymmetry in the design parameters of different gates can take the form of varying the gate length, the gate width and the threshold voltage so as to vary the conductance of different gates to suit their individual role within the memory cell 36 which is operating in the asymmetric manner provided by the separate word line signals driving read operations and write operations.
摘要:
A process and implementing computer system (13) for updating circuit representations in a hierarchical Directed Acyclic Graph (DAG) format (400-410) based upon changes made to the primitive components of the circuit in a flat representation (201-213) includes performing a depth first search (505) on the hierarchical representation of the circuit beginning at the root level (501) for a given path. At each lower level, each child instance is visited (505) and if there is any change in any attribute between the hierarchical and flat representations (509), the component in the hierarchical representation which needs to be changed is copied (807) and connected to the children components of the original hierarchical representation. Changes in the attributes of the children components are made in the copied component (809). If the new component already exists in the hierarchy 811, then that component is deleted (817), otherwise the copied component is returned (813), and changes are passed upwardly to the root level (815) where the previous DAG may be replaced with the copied and updated DAG which includes changes in the attributes of components of a corresponding flat circuit representation.
摘要:
An integrated circuit (100) is provided with power regulating circuitry (104) serving to actively regulate the voltage difference between a first power supply rail Vdd and a second power rail Vss being used to supply electrical power to processing circuitry (102). A voltage regulating capacitor Ca has one terminal connected to the first power rail Vdd and a second terminal selectively connected to either the second power rail Vss or a third power rail Vdda. Should a voltage undershoot be detected by voltage sensing circuitry 106, then the capacitor Ca is connected to the third power rail Vdda so as to dump at least part of charge Ca, Vdda in capacitor Ca onto the first power rail Vdd and resist the voltage drop. During normal operation, charge is accumulated into the capacitor Ca. An additional load device T2 is provided to lower the voltage difference should an overshoot be detected.
摘要:
An integrated circuit 2 is provided with domino logic including a speculative node 22 and a checker node 24. Precharged circuitry 36 precharges both the speculative node and the checker node. Logic circuitry 26 provides a discharge path for the speculative node and the checker node in dependence upon input signal values. Evaluation control circuitry 28, 30 first couples the speculative node to the logic circuitry and then subsequently couples the checker node to the logic circuitry such that these can be discharged if the input signals to the logic circuitry 26 have appropriate values. Error detection circuitry 32 detects an error when the speculative node and the checker node are not one of both discharged or both undischarged.
摘要:
A memory cell 36 within an integrated circuit memory is provided with an access controller 32 coupled to a first pass gate 38 and a second pass gate 40. During a write access to the memory cell 38 both the first pass gate 38 and the second pass gate 40 are opened. During a read access, the first pass gate 38 is opened and the second pass gate 40 is closed. This asymmetry in the read and write operations permits an asymmetry in the gates forming the memory cell 36 thereby permitting changes to increase both read robustness and write robustness. The asymmetry in the design parameters of different gates can take the form of varying the gate length, the gate width and the threshold voltage so as to vary the conductance of different gates to suit their individual role within the memory cell 36 which is operating in the asymmetric manner provided by the separate word line signals driving read operations and write operations.
摘要:
An apparatus for processing data 2 is provided with a time-to-digital converter 18 which serves to measure signal processing delay through one or more signal paths through a processing stage. This measured delay generates a delay value representing a plurality of instances of the signal processing delay which have been measured. Analysis is performed under software control to estimate a worst case signal processing delay through the processing stage based upon the delay values which have been generated. An adjustment of the operating parameters, such as supply voltage and clock frequency, of the apparatus is made to provide a timing margin through the processing stage sufficient to satisfy the worst case signal processing delay which has been estimated without an excessive margin.
摘要:
A signal capture element for providing a first pre-charged logic level as first and second interim address portion signals during a pre-charged period and outputting during an evaluate period an address portion logic level as the first interim address portion signal and an inverted address portion logic level as the second interim address portion signal. First and second address portion signals are derivable respectively from first and second interim address portion signals. An inverter circuit for outputting to an address decoder during a pre-charged period a second pre-charged logic level as the first and second address portion signals. The inverter circuit having transfer characteristics that maintain voltage levels such that the first and second address portion signals are interpreted to be at the second pre-charged logic level despite the first or second interim address portion signal failing to transition to a valid logic level during the evaluate period.
摘要:
A true random number generator comprises a ring oscillator which is triggered to start oscillating in a first mode of oscillation at an oscillation start time. The first mode of oscillation will eventually collapse to a second mode of oscillation dependent on thermal noise. A collapse time from the oscillation start time to the time at which the oscillator collapses to the second mode is measured, and this can be used to determine a random number. The TRNG can be synthesized entirely using standard digital techniques and is able to provide high randomness, good throughput and energy efficiency.
摘要:
Memory circuitry comprising an array of 6T bit cells 6 in which columns of bit cells are coupled together via bit line pairs 8 connected to respective sense amplifier circuitry 10 is provided. The sense amplifier circuitry includes an inverter pair 12, 14 and control circuitry which is configured to control the sense amplifier circuitry to operate in a plurality of modes including an offset compensation mode, an amplification mode and a latching mode.