Abstract:
The present invention discloses a voltage regulator which generates a control signal to convert an input voltage to an output voltage, the voltage regulator comprising: a regulator module for generating the control signal according to comparison between a signal representative of the output voltage and a signal representative of a reference voltage; and an amplifier for generating a first index signal by amplifying a difference between the signal representative of the output voltage and the signal representative of the reference voltage.
Abstract:
A semiconductor device package comprises a first semiconductor die having a first source region, a first gate region, and a first drain region attached on a first leadframe, a second semiconductor die having a second source region, a second gate region, and a second drain region attached on a second leadframe, and several pins electrically connected to the leadframes and source and gate regions. The second leadframe is electrically connected to the first source region. The pins connected to the first leadframe and second source region are on a side of the package, and the pins connected to the first gate region, second leadframe, and second gate region are on another side of the package.
Abstract:
An overshoot suppression circuit comprises a switch for coupling to an output of a voltage regulation module and a voltage detector for detecting an output voltage at the output. When the load to the voltage regulation module changes from heavy to light to result in the output voltage higher than a threshold, the voltage detector turns on the switch to release energy from the output, and thereby the output voltage is suppressed to produce overshoot to damage the load coupled to the output.
Abstract:
A DC-to-DC converter comprises a sense circuit to sense the output voltage of the converter to generate a feedback signal, a transconductive amplifier to amplify a difference between the feedback signal and a threshold signal to generate a first current and to generate a second current in response to a load transient, a charging circuit connected with the first current to generate a charging voltage, a driver to compare the charging voltage with two reference signals to generate a pair of low-side and high-side driving signals, and a fast response circuit to compare a load transient signal corresponding to the second current with a third reference signal to generate a bypass signal to drive the output stage of the converter in the load transient.
Abstract:
A two-step DC-to-DC converter comprises a first converter stage for converting a first voltage to a second voltage, and a second converter stage for converting the second voltage to an output voltage. The first converter stage uses a MOSFET or normally-off JFET to serve as a high-side switch, and the second converter stage comprises a multi-phase modulator using a normally-on JFET to serve as a high-side switch, thereby improving the efficiency of the two-step DC-to-DC converter.
Abstract:
For a PWM controller chip in a voltage converter to switch a pair of high side and low side switches connected with a phase node therebetween, a circuit comprises a sense resistor connected between a multi-function pin on the PWM controller chip and the phase node, and an enable arrangement, a power sensing arrangement, and an over-current protection arrangement to detect the voltage on the multi-function pin for accomplishing enable function, power sensing, and over-current protection, respectively.
Abstract:
A direct current voltage boosting/bucking device includes a direct current voltage boosting circuit and a low drop-out (LDO) linear voltage converting circuit. The direct current voltage boosting circuit boosts an input voltage so as to generate an output voltage higher than the input voltage. The LDO linear voltage converting circuit converts the output voltage into a load voltage that is to be provided to a load, and controls the direct current voltage boosting circuit in accordance with a feedback signal from the load such that the output voltage and the load voltage have a minimum drop-out voltage differential therebetween and such that current flow through the load is maintained at a determined level.
Abstract:
In a voltage regulator including an error amplifier to generate a first signal related to an output voltage of the voltage regulator, a current sense circuit to generate a second signal related to an inductor current of the voltage regulator, and a PWM comparator to generate a PWM signal in response to the first and second signals to regulate the output voltage, a current feed-through adaptive voltage position control comprises supplying ramp signal and offset signal to modify the PWM signal to thereby elliminate the offset of the output voltage.
Abstract:
An overshoot suppression circuit comprises a switch for coupling to an output of a voltage regulation module and a voltage detector for detecting an output voltage at the output. When the load to the voltage regulation module changes from heavy to light to result in the output voltage higher than a threshold, the voltage detector turns on the switch to release energy from the output, and thereby the output voltage is suppressed to produce overshoot to damage the load coupled to the output.
Abstract:
A single-chip common-drain JFET device comprises a drain, two gates and two source arranged such that two common-drain JFETs are formed therewith. Due to the two JFETs merged within a single chip, no wire bonding connection is needed therebetween, thereby without parasitic inductance and resistance caused by bonding wire, and therefore improving the performance and reducing the package cost. The single-chip common-drain JFET device may be applied in buck converter, boost converter, inverting converter, switch, and two-step DC-to-DC converter to improve their performance and efficiency. Alternative single-chip common-drain JFET devices are also provided for current sense or proportional current generation.