摘要:
Embodiments described herein generally relate to methods and apparatus for forming an electrode structure used in an energy storage device. More particularly, embodiments described herein relate to methods and apparatus for characterizing nanomaterials used in forming high capacity electrode structures for energy storage devices. In one embodiment a process for forming an electrode structure for an energy storage device is provided. The process comprises depositing a columnar metal structure over a substrate at a first current density by a diffusion limited deposition process, measuring a capacitance of the columnar metal structure to determine a surface area of the columnar metal structure, and depositing three dimensional porous metal structures over the columnar metal structure at a second current density greater than the first current density.
摘要:
A method and apparatus for forming a reliable and cost efficient battery or electrochemical capacitor electrode structure that has an improved lifetime, lower production costs, and improved process performance are provided. In one embodiment a method for forming a three dimensional porous electrode for a battery or an electrochemical cell is provided. The method comprises depositing a columnar metal layer over a substrate at a first current density by a diffusion limited deposition process and depositing three dimensional metal porous dendritic structures over the columnar metal layer at a second current density greater than the first current density.
摘要:
A wire saw for cutting hard materials includes a carbon nanotube fiber wire spun from carbon nanotubes. The carbon nanotube fiber wire may be made from a plurality of fibers, each fiber being spun from carbon nanotubes, the fibers being twisted together to form the wire. Furthermore, the wire may also include diamond particles, silicon carbide particles and/or extra carbon nanotubes to enhance the abrasive properties of the wire. A method is provided for slicing a silicon boule including: linearly translating a carbon nanotube fiber wire between rotating drums while maintaining the wire under tension; using a fixture, moving the silicon boule onto the moving tensioned wire, whereby the wire cuts into the silicon; delivering lubricating fluid to the surface of the silicon where contact is made with the wire; and collecting the lubricating fluid after it leaves the surface of the silicon.
摘要:
The present invention generally comprises a method for achieving fault tolerance in a PV FAB. A plurality of processing tools may be coupled together along a processing line, and a plurality of substantially identical processing lines may be arranged within the FAB. Whenever a processing tool within any processing line is shut-down, rather than shut-down the entire processing line containing the shut-down processing tool, work-pieces may be routed around the shut-down processing tool by transferring the work-pieces to an adjacent processing line within the FAB. At a location after the shut-down processing tool, the work-pieces may be transferred back to the processing line containing the shut-down processing tool. During the time period that the processing tool is shut-down, the other processing lines within the FAB may increase their throughput in order to maintain a substantially constant optimum throughput for the FAB over a given period of time.
摘要:
A substrate coating system is provided which includes a substrate coating chamber; a gas box connected to the coating chamber and adapted to provide reagent gases to the coating chamber; and a reagent reclaim system connected to the substrate coating chamber and the gas box, wherein the reagent reclaim system includes a wet scrubber connected to the coating chamber; a polisher connected to the wet scrubber; and a dryer connected to the polisher and the gas box.
摘要:
The present invention generally comprises a method for achieving fault tolerance in a PV FAB. A plurality of processing tools may be coupled together along a processing line, and a plurality of substantially identical processing lines may be arranged within the FAB. Whenever a processing tool within any processing line is shut-down, rather than shut-down the entire processing line containing the shut-down processing tool, work-pieces may be routed around the shut-down processing tool by transferring the work-pieces to an adjacent processing line within the FAB. At a location after the shut-down processing tool, the work-pieces may be transferred back to the processing line containing the shut-down processing tool. During the time period that the processing tool is shut-down, the other processing lines within the FAB may increase their throughput in order to maintain a substantially constant optimum throughput for the FAB over a given period of time.
摘要:
A chemical-mechanical jet etching method rapidly removes large amounts of material in wafer thinning, or produces large-scale features on a silicon wafer, gallium arsenide substrate, or similar flat semiconductor workpiece, at etch rates in the range of 10–100 microns of workpiece thickness per minute. A nozzle or array of nozzles, optionally including a dual-orifice nozzle, delivers a high-pressure jet of machining etchant fluid to the surface of the workpiece. The machining etchant comprises a liquid or gas, carrying particulate material. The liquid may be a chemical etchant, or a solvent for a chemical etchant, if desired. The areas which are not to be etched may be shielded from the jet by a patterned mask, or the jet may be directed at areas from which material is to be removed, as in wafer thinning or direct writing, depending on the size of the desired feature or etched area.
摘要:
A system and method for processing large area substrates is provided. In one embodiment, a processing system includes a transfer chamber having at least one processing chamber and a substrate staging system coupled thereto. The staging system includes a load lock chamber having a first port coupled to the transfer chamber and a heat treating station coupled to a second port of the load lock chamber. A load lock robot is disposed in the load lock chamber to facilitate transfer between the heat treating station and the load lock chamber.
摘要:
The method of the invention involves depositing a plurality of thin layers of film, each layer having a thickness ranging from about 500Å to about 2000Å. Low Pressure Chemical Vapor Deposition or other techniques known in the art maybe used to deposit each thin layer of film. The film is polysilicon or silicon-germanium, where the germanium content ranges from about 4% by weight to about 20% by weight germanium. A Rapid Thermal Anneal (“RTA”) is performed on a deposited thin film layer to relieve residual film stress in at least that film layer. The use of RTA rather than furnace annealing permits much shorter annealing times. Optionally, but advantageously, hydrogen may be present during RTA to permit the use of lower processing temperatures, typically about 20% lower relative to a customary anneal. A series of film deposition/rapid thermal anneal cycles is used to produce the desired, nominal total thickness polysilicon film. This method is generally useful for producing polysilicon films in the range of from about 2 microns to about 20 microns.
摘要:
Apparatus and methods of forming a battery-active material are described. An apparatus includes a first processing section that raises the temperature of a precursor material to a reaction threshold temperature, a second processing section that converts the precursor material to a battery-active material, and a third processing section that cools the resulting battery-active material. Each of the processing sections may be a continuous flow tubular component. The first and third processing sections may be metal, and the second processing section may be a refractory material for high temperature service. The battery-active material is collected using a solids collector.