Abstract:
Various designs and configurations of and methods of operating fuel cell units, fuel cell systems and combined heat and power systems are provided that permit efficient thermal management of such units and systems to improve their operation.
Abstract:
The present teachings provide multi-reformable fuel delivery systems and methods that can deliver, without the use of a liquid pump, any hydrocarbon fuel, i.e., a liquid or gaseous reformable fuel, for example, to at least one of a reformer, a vaporizer, a fuel cell stack, an afterburner and other assemblies and components of a fuel cell unit or system, More specifically, gas pressure can be used to control and deliver gaseous reformable fuels and/or liquid reformable fuels in the delivery systems and methods of the present teachings. The delivery systems and methods also can apply to the delivery of a liquid reactant such as water and gaseous reactants such as an oxygen-containing gas (e.g., air) and steam.
Abstract:
A reformer includes at least one reformer reactor unit (300) having a space-confining wall with external (307) and internal surfaces (306), at least a section of the wall and space confined thereby defining a reforming reaction zone (311), an inlet end (301) and associated inlet (302) for admission of flow of gaseous reforming reactant to the reforming reaction zone (311), an outlet end (303) and associated outlet (304) for outflow of hydrogen-rich reformate produced in the reforming reaction zone (311), at least that section of the wall (305) corresponding to the reforming reaction zone comprising perovskite as a structural component thereof such wall section being gas-permeable to allow gaseous reforming reactant to diffuse therein and hydrogen-rich reformate to diffuse therefrom.
Abstract:
A liquid fuel reformer includes a fuel vaporizer which utilizes heat from an upstream source of heat, specifically, an electric heater, operable in the start-up mode of the reformer, and therefore independent of the reforming reaction zone of the reformer, to vaporize fuel in a downstream vaporization zone.
Abstract:
A liquid fuel reformer (400) includes a fuel vaporizer (415) which utilizes heat from an upstream source of heat, specifically, an electric heater (406), operable in the start-up mode of the reformer (400), and therefore independent of the reforming reaction zone of the reformer, to vaporize fuel in a downstream vaporization zone.
Abstract:
Integrated liquid fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The liquid fuel CPOX reformer also can include a vaporizer, one or more igniters, and a source of liquid reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the liquid fuel CPOX reactor unit.
Abstract:
Integrated liquid fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The liquid fuel CPOX reformer also can include a vaporizer, one or more igniters, and a source of liquid reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the liquid fuel CPOX reactor unit.
Abstract:
A centrifugal blower system includes a series of blower units, each blower unit in the series comprising a casing having an axial inlet and a radial outlet, an impeller disposed within the casing for drawing a gaseous medium at a first pressure into the inlet and expelling gaseous medium at a second higher pressure through the outlet and a motor for driving the impeller, and, a duct connecting the outlet of at least one blower unit in the series with the inlet of at least one other blower unit in the series.
Abstract:
Various designs and configurations of and methods of operating fuel cell units, fuel cell systems and combined heat and power systems are provided that permit efficient thermal management of such units and systems to improve their operation.
Abstract:
A reformer includes at least one reformer reactor unit (300) having a space-confining wall with external (307) and internal surfaces (306), at least a section of the wall and space confined thereby defining a reforming reaction zone (311), an inlet end (301) and associated inlet (302) for admission of flow of gaseous reforming reactant to the reforming reaction zone (311), an outlet end (303) and associated outlet (304) for outflow of hydrogen-rich reformate produced in the reforming reaction zone (311), at least that section of the wall (305) corresponding to the reforming reaction zone comprising perovskite as a structural component thereof such wall section being gas-permeable to allow gaseous reforming reactant to diffuse therein and hydrogen-rich reformate to diffuse therefrom.