摘要:
A vehicle includes a sealed fuel system and a controller. The fuel system includes a fuel tank, a fuel cap, a control orifice, and an absolute pressure sensor. The controller associates a threshold large leak in the fuel system with a fuel cap sealing error. The controller detects completion of a prior refueling event, compares measurements from the pressure sensor to a reference vacuum across the control orifice to determine the presence of the threshold large leak, and sets a diagnostic code corresponding to the large leak only upon completion of the prior refueling event. A method for detecting the large leak includes detecting completion of the refueling event, comparing vacuum measurements from the absolute pressure sensor to a reference vacuum across the orifice to determine the presence of the large leak, and setting a diagnostic code corresponding to the large leak only upon completion of the prior refueling event.
摘要:
A method of monitoring an onboard diagnostic system for a plug-in hybrid electric vehicle includes incrementing the denominator of an N/D ratio for the onboard diagnostic system only when a total time criteria, a vehicle speed criteria and an idle criteria are satisfied after an internal combustion engine of the vehicle has been fueled. The diagnostic system performance is summarized into a single N/D ratio. When an underperforming ratio is identified, the system controls the engine to provide more engine operation and subsequent diagnostic observability. The denominator of the N/D ratio is compared to a verification denominator to identify vehicles that are typically operated in a manner such that an engine-on cycle does not begin, or is not identified, until very near the end of the drive cycle, thereby preventing the denominator and a numerator of the N/D ratio from incrementing, and thereby providing a false passing performance ratio.
摘要:
A diagnostic system for an engine includes a stage transition module and a control module. The stage transition module generates a command signal based on a fuel control signal. The command signal commands a fuel system of the engine to intrusively transition between rich and lean states during a diagnostic test that includes first, second, and third stages. The first, second, and third stages are defined based on transitions between the rich and lean states. The control module during the second and third stages detects: an error with a first oxygen sensor based on a comparison between the command signal and a first oxygen signal from the first oxygen sensor; an error with a second oxygen sensor based on a second oxygen signal from the second oxygen sensor; and an error with a catalytic converter based on the first and second oxygen signals and a manifold absolute pressure signal.
摘要:
A control system for a vehicle is provided. The control system includes a signal processing module that receives a sensor signal and extracts a plurality of sample points from the sensor signal. A computation module computes a summation of the sample points, computes a summation of squares of the sample points, and computes a standard deviation based on the summation of the sample points and the summation of the squares of the sample points. A control module generates a control signal based on the sensor signal and the standard deviation.
摘要:
A diagnostic system for an engine includes a stage transition module and a control module. The stage transition module generates a command signal based on a fuel control signal. The command signal commands a fuel system of the engine to intrusively transition between rich and lean states during a diagnostic test that includes first, second, and third stages. The first, second, and third stages are defined based on transitions between the rich and lean states. The control module during the second and third stages detects: an error with a first oxygen sensor based on a comparison between the command signal and a first oxygen signal from the first oxygen sensor; an error with a second oxygen sensor based on a second oxygen signal from the second oxygen sensor; and an error with a catalytic converter based on the first and second oxygen signals and a manifold absolute pressure signal.
摘要:
A method for assessing NO2 generation efficiency in a diesel engine after-treatment (AT) system having a diesel oxidation catalyst (DOC) downstream of the engine generating the NO2 and a selective catalytic reduction (SCR) catalyst downstream of the DOC converting NOX with the aid of the NO2. Engine exhaust gas flow is passed into the AT system and a reductant is injected into the gas flow between the DOC and the SCR catalyst. SCR inlet gas flow temperature is monitored during transient engine operation and DOC inlet and SCR catalyst outlet NOX concentrations are detected when the SCR catalyst inlet gas flow temperature is in a predetermined range. SCR catalyst NOX conversion efficiency is determined using the detected DOC inlet and SCR catalyst outlet concentrations of NOX. Additionally, whether the NO2 generation efficiency is at or above threshold efficiency is assessed by comparing the determined and threshold NOX conversion efficiencies.
摘要:
A control module for an engine of a vehicle includes a mode determination module that determines whether the vehicle is in a fuel-saving mode based on an acceleration of the vehicle. A diurnal control valve (DCV) control module selectively closes a DCV a predetermined time after at least one of determining that the vehicle is in the fuel-saving mode and determining that the engine is stopped.
摘要:
A method of assessing overall efficiency of a selective-catalytic-reduction catalyst includes monitoring instantaneous efficiency of the catalyst. The method also includes determining the overall efficiency by summing instantaneous efficiency values weighted by a first set of coefficients if the most recent instantaneous efficiency value is above an instantaneous efficiency threshold. The method additionally includes determining the overall efficiency by summing instantaneous efficiency values weighted by a second set of coefficients if the most recent instantaneous efficiency value is equal to or below the instantaneous efficiency threshold. Furthermore, the method includes determining whether the overall efficiency has dropped below an overall efficiency threshold and reporting when the overall efficiency has dropped below the overall efficiency threshold. The second set of coefficients weighs the most recent instantaneous efficiency value more heavily than preceding instantaneous efficiency values as compared with the first set of coefficients. A system and a vehicle are also disclosed.
摘要:
A diagnostic system for a vehicle includes a first sensor that generates a first status signal, which is indicative of an engine speed of an engine. A second sensor generates a second status signal that is indicative of an actual accessory speed of an accessory. The accessory is coupled to the engine via a belt system. A control module determines an expected accessory speed based on the engine speed and determines a residual accessory speed based on the expected and actual accessory speeds. The control module also detects a fault in the belt system based on the residual accessory speed.
摘要:
A control module for an engine of a vehicle includes a mode determination module that determines whether the vehicle is in a fuel-saving mode based on an acceleration of the vehicle. A diurnal control valve (DCV) control module selectively closes a DCV a predetermined time after at least one of determining that the vehicle is in the fuel-saving mode and determining that the engine is stopped.