Abstract:
According to one embodiment, a method is disclosed. The method includes receiving video data, measuring a temporal feature of motion movement of the data, measuring per-pixel spatial content features of the data, performing a local content analysis to classify pixels; and performing noise reduction filtering on the pixels.
Abstract:
A system, apparatus, method, and article to process a flexible macroblock ordering and arbitrary slice ordering are described. The apparatus may include a video decoder. The video decoder includes a processor to store coding parameters of one or more neighboring macroblocks in a data buffer. The neighboring macroblocks are previously decoded macroblocks and are adjacent to a current macroblock. The processor is to store control parameters for each of the one or more neighboring macroblocks in the data buffer. The processor is to reconstruct coding parameters for the current macroblock using availability information associated with the neighboring macroblocks.
Abstract:
A system, apparatus, method, and article to process a chroma motion vector are described. The apparatus may include a video decoder. The video decoder includes a processor to receive a compressed video bitstream. The compressed video bitstream includes a stream of pictures. The stream of pictures includes a current slice and a current block within the slice. The processor pre-computes a chroma motion vector adjustment parameter for the current slice and determines a motion vector component for the current block within the current slice using the pre-computed chroma motion vector adjustment parameter. Other embodiments are described and claimed.
Abstract:
An embodiment improves the operation of a H.264 and Joint Scalable Video Codec (e.g., JSVC/H.264 Amendment 3) video decoder by managing neighboring block data during the decoding process. An embodiment pre-computes neighboring block tables to efficiently locate the neighboring block data required to decode a current macroblock. In particular, the pre-computed most probable joint neighboring block tables disclosed herein handle both macroblock adaptive frame field (MBAFF) coding and non-MBAFF coding. An embodiment is further capable of managing variable block sizes. Other embodiments are described and claimed.
Abstract:
A system, apparatus, method and article to filter media signals are described. The apparatus may include a media processor. The media processor may include an image signal processor having multiple processing elements to determine a level of noise for an image using an internal spatial region of said image, select filter parameters based on the level of noise, and filter the image using the filter parameters. Other embodiments are described and claimed.
Abstract:
A method and system for compressing and decompressing video image data in real time employs thresholding and facsimile-based encoding to eliminate the need for computationally intensive two-dimensional transform-based compression techniques. The method operates first by forming a difference frame which contains only information pertaining to the difference between a current video image frame and a computed approximation of the video image frame. The difference frame is fed to a thresholder which categorizes each pixel in the frame as being either in a first set having intensities above or at a preset threshold, or a second set having intensities below a preset threshold. A facsimile-based compression algorithm is then employed to encode the first set of above or at threshold pixel locations. To compress the intensity data for each above or at threshold pixel, a quantizer and lossless encoder are preferably employed, with the quantizer serving to categorize the intensities by groups, and the lossless encoder using conventional coding, such as Huffman coding, to compress the intensity data further. Various techniques may be employed with the embodiments of the invention to adjust the actual amount of compressed data generated by the method and system to accommodate communication lines with different data rate capabilities.
Abstract:
Methods, systems, and computer program products for the generation of multiple layers of scaled encoded video data compatible with the HEVC standard. Residue from prediction processing may be transformed into coefficients in the frequency domain. The coefficients may then be sampled to create a layer of encoded data. The coefficients may be sampled in different ways to create multiple respective layers. The layers may then be multiplexed and sent to a decoder. There, one or more of the layers may be chosen. The choice of certain layer(s) may be dependent on the desired attributes of the resulting video. A certain level of video quality, frame rate, resolution, and/or bit depth may be desired, for example. The coefficients in the chosen layers may then be assembled to create a version of the residue to be used in video decoding.
Abstract:
Method and apparatus for deriving a motion vector at a video decoder. A block-based motion vector may be produced at the video decoder by utilizing motion estimation among available pixels relative to blocks in one or more reference frames. The available pixels could be, for example, spatially neighboring blocks in the sequential scan coding order of a current frame, blocks in a previously decoded frame, or blocks in a downsampled frame in a lower pyramid when layered coding has been used.