摘要:
The present disclosure relates to a method of coating a substrate, with the method comprising: providing a substrate; dispersing nanodiamond powder in a liquid to provide a coating precursor; converting the liquid of the coating precursor to a vapor; introducing the coating precursor to a vapor deposition process; and operating the vapor deposition process to produce a nanocrystalline diamond-containing nanocomposite coating on the substrate, the nanocomposite coating produced using the coating precursor and comprising the nanodiamond particles.
摘要:
A system and method for depositing coatings on an inner surface of a tubular structure includes at least one pump for creating and maintaining a vacuum in the tubular structure, a meshed electrode adapted to be positioned in a center of the tubular structure, and a biased voltage power supply connected to the meshed electrode. The biased voltage power supply is adapted to apply a negative voltage to the meshed electrode such that the negative voltage causes a hollow cathode discharge inside the meshed electrode. The creation of the hollow cathode discharge causes ions to be drawn out of a mesh on the meshed electrode and accelerate onto an inner surface of the tubular structure, thereby coating the inner surface with a desired coating.
摘要:
A method of sputtering a component includes positioning a conductive substrate into a vacuum chamber, wherein the conductive substrate is tubular and has a surface. A source electrode including a source material may be inserted into the conductive substrate. A first bias voltage ΔVac1 may be applied between the conductive substrate and the vacuum chamber and a second bias voltage ΔVas1 may be applied between the source electrode and the vacuum chamber, sputtering the source material onto the conductive substrate.
摘要:
A method for depositing a coating using a magnetron sputtering apparatus and a magnetron sputtering apparatus comprising: a support structure comprising a hollowed shaft comprising a central conduit having a longitudinal axis; a sputter target material defining a bore which is external to the central conduit, the bore also having the longitudinal axis a magnet assembly supported about the support structure, the magnet assembly having a first end, a second end, and a plurality of magnets supported therebetween and being effective, upon rotation, to generate a circumferential external magnetic field about the sputter target material; a first sealed end extending radially inward from adjacent the sputter target material proximate the first end of the magnet assembly and a second sealed end extending radially inward from adjacent the sputter target material proximate the second end of the magnet assembly, wherein the first sealed end, the second sealed end, and the sputter target material seal the magnet assembly therebetween; a cooling system comprising one or more coolant passage extending through the magnet assembly, the central conduit comprising a coolant inlet and a coolant outlet at the first sealed end; and, one or more rotors supported about the support structure and rotatable therewith by coolant passing through the one or more coolant passages.
摘要:
This invention is a method of forming a nitride layer on at least one metal or metal alloy biomedical device, comprising: providing a vacuum chamber with at least one biomedical device positioned thereon on a worktable within the vacuum chamber; reducing the pressure in the vacuum chamber; introducing nitrogen into the vacuum chamber so that the pressure in the vacuum chamber is about 0.01 to about 10 milli-Torr; generating electrons within the vacuum chamber to form positively charged nitrogen ions; providing a negative bias to the worktable so that the positively charged nitrogen ions contact the biomedical devices under conditions such that a nitride layer forms on the at least one prosthetic device.
摘要:
This invention is directed to a method of preventing oxidation of copper alloys at high temperatures by deposition of a nano-structured, low-chromium copper-chromium protective coating to copper-alloy components. The coatings of the present invention are applied by an ion beam assisted, electron beam physical vapor deposition and consist of copper and chromium particles having a diameter of about 10 nm. This invention also encompasses the coated copper-alloy components produced by the disclosed deposition methods.
摘要:
This invention is a method for metal plasma ion implantation and metal plasma ion deposition, comprising: providing a vacuum chamber with at least one workpiece having a surface positioned on a worktable within the vacuum chamber; reducing the pressure in the vacuum chamber; generating a plasma of metal ions within the vacuum chamber, applying a negative bias to the worktable to thereby accelerate metal ions from the plasma toward at least one workpiece to thereby either implant metal ions into or deposit metal ions onto the workpiece or both. This invention includes an apparatus for metal ion implantation and metal ion plasma deposition, comprising: a vacuum chamber, a metal plasma generator within the vacuum chamber, and at least one worktable within the vacuum chamber.
摘要:
A plasma-enhanced coaxial magnetron sputter-cleaning and coating assembly for sputter-cleaning and coating the interior surfaces of a cylindrical workpiece is provided. The apparatus sputter-coats the workpiece using a cylindrical sputtering material, the material having an interior and an exterior. The apparatus includes a core cooling system surrounded by a ring magnet assembly including a plurality of axially aligned ring magnets, with the core cooling system and the ring magnet assembly axially aligned with, and residing in the interior of, the cylindrical sputtering material. A cylindrical-shaped filament circumferentially surrounds the exterior of the cylindrical sputtering material. An anode comprised of a wire screen circumferentially surrounds, and is external to the filament; whereby the apparatus for plasma-enhanced coaxial magnetron sputter-cleaning and coating may be housed inside the workpiece in order to sputter-clean and coat the interior of the workpiece.