摘要:
Memristive elements are provided that include an active region disposed between a first electrode and a second electrode, the active region including two switching layers formed of a switching material capable of carrying a species of dopants and a conductive layer formed of a dopant source material. Memristive elements also are provided that include two active regions disposed between a first electrode and a second electrode, and a third electrode being disposed between and in electrical contact with both of the active regions. Each of the active regions include a switching layer formed of a switching material capable of carrying a species of dopants and a conductive layer formed of a dopant source material. Multilayer structures including the memristive elements also are provided.
摘要:
Memristor systems and method for fabricating memristor system are disclosed. In one aspect, a memristor includes a first electrode, a second electrode, and a junction disposed between the first electrode and the second electrode. The junction includes at least one layer such that each layer has a plurality of dopant sub-layers disposed between insulating sub-layers. The sub-layers are oriented substantially parallel to the first and second electrodes.
摘要:
A nanoscale switching device has an active region containing a switching material capable of carrying a species of dopants and transporting the dopants under an electrical field. The switching device has first, second and third electrodes with nanoscale widths. The active region is disposed between the first and second electrodes. A resistance modifier layer, which has a non-linear voltage-dependent resistance, is disposed between the second and third electrodes.
摘要:
A memristor has a first electrode, a second electrode parallel to the first electrode, and a switching layer disposing between the first and second electrodes. The switching layer contains a conduction channel and a reservoir zone. The conduction channel has a Fermi glass material with a variable concentration of mobile ions. The reservoir zone is laterally disposed relative to the conduction channel, and functions as a source/sink of mobile ions for the conduction channel. In the switching operation, under the cooperative driving force of both electric field and thermal effects, the mobile ions are moved into or out of the laterally disposed reservoir zone to vary the concentration of the mobile ions in the conduction channel to change the conductivity of the Fermi glass material.
摘要:
An electrically actuated device comprises an active region disposed between a first electrode and a second electrode, a substantially nonrandom distribution of dopant initiators at an interface between the active region and the first electrode, and a substantially nonrandom distribution of dopants in a portion of the active region adjacent to the interface.
摘要:
A nanoscale switching device is provided. The device comprises: a first electrode of a nanoscale width; a second electrode of a nanoscale width; an active region disposed between the first and second electrodes, the active region having a non-conducting portion comprising an electronically semiconducting or nominally insulating and a weak ionic conductor switching material capable of carrying a species of dopants and transporting the dopants under an electric field and a source portion that acts as a source or sink for the dopants; and an oxide layer either formed on the first electrode, between the first electrode and the active region or formed on the second electrode, between the second electrode and the active region. A crossbar array comprising a plurality of the nanoscale switching devices is also provided. A process for making at least one nanoscale switching device is further provided.
摘要:
Various embodiments of the present invention are direct to nanoscale, reconfigurable, two-terminal memristor devices. In one aspect, a device (400) includes an active region (402) for controlling the flow of charge carriers between a first electrode (104) and a second electrode (106). The active region is disposed between the first electrode and the second electrode and includes a storage material. Excess mobile oxygen ions formed within the active region are stored in the storage material by applying a first voltage.
摘要:
A nanoscale switching device has an active region disposed between two electrodes of nanoscale widths. The active region contains a switching material that carries mobile ionic dopants capable of being transported over the active region under an electric field to change a resistive state of the device. The switching material further carries immobile ionic dopants for inhibiting clustering of the mobile ionic dopants caused by switching cycles of the device. The immobile ionic dopants have a charge opposite in polarity to the charge of the mobile ionic dopants, and are less mobile under the electric field than the mobile ion dopants.
摘要:
A nitride-based memristor memristor includes: a first electrode comprising a first nitride material; a second electrode comprising a second nitride material; and active region positioned between the first electrode and the second electrode. The active region includes an electrically semiconducting or nominally insulating and weak ionic switching nitride phase. A method for fabricating the nitride-based memristor is also provided.
摘要:
An asymmetric switching rectifier includes a first switching device to allow electric current to flow while in a first state and inhibit electric current in a second state and a second switching device connected in a head-to-head formation to said first switching device, said second switching to allow electric current to flow while in a first state and inhibit electric current in a second state. A first electric current to turn said switching devices to said first state is different than a second electric current to turn said switching devices to said second state. The rectifier further includes a bypass segment to draw a bypass electric current from a center electrode between said first switching device and said second switching device.