摘要:
An optical device for surface enhanced Raman spectroscopy includes a substrate, and at least one antenna established thereon. The at least one antenna including at least two segments, where each segment is formed of a metal having a predetermined volume and a predetermined contact angle with respect to the substrate. A gap is located between the two segments. The gap has a controllable size such that the at least one antenna resonates at a predetermined frequency that corresponds with the gap.
摘要:
An optical device for surface enhanced Raman spectroscopy includes a substrate, and at least one antenna established thereon. The at least one antenna including at least two segments, where each segment is formed of a metal having a predetermined volume and a predetermined contact angle with respect to the substrate. A gap is located between the two segments. The gap has a controllable size such that the at least one antenna resonates at a predetermined frequency that corresponds with the gap.
摘要:
Various aspects of the present invention are directed to electric-field-enhancement structures and detection apparatuses that employ such electric-field-enhancement structures. In one aspect of the present invention, an electric-field-enhancement structure includes a substrate having a surface. The substrate is capable of supporting a planar mode having a planar-mode frequency. A plurality of nanofeatures is associated with the surface, and each of nanofeatures exhibits a localized-surface-plasmon mode having a localized-surface-plasmon frequency approximately equal to the planar-mode frequency.
摘要:
A configurable grating based on collapsing nano-fingers includes a substrate; and a plurality of bendable nano-fingers supported on the substrate. The nano-fingers may be formed in a regular first array and the nano-fingers may be formed in a spacing that, upon closing at their tops, forms a second array to act as an optical grating or a diagnostic tool. A method of fabricating a configurable optical grating based on collapsing nano-fingers is also disclosed, as well as a method of determining an open or closed state for a plurality of nano-fingers.
摘要:
A configurable grating based on collapsing nano-fingers includes a substrate; and a plurality of bendable nano-fingers supported on the substrate. The nano-fingers may be formed in a regular first array and the nano-fingers may be formed in a spacing that, upon closing at their tops, forms a second array to act as an optical grating or a diagnostic tool. A method of fabricating a configurable optical grating based on collapsing nano-fingers is also disclosed, as well as a method of determining an open or closed state for a plurality of nano-fingers.
摘要:
Various aspects of the present invention are directed to electric-field-enhancement structures and detection apparatuses that employ such electric-field-enhancement structures. In one aspect of the present invention, an electric-field-enhancement structure includes a substrate having a surface. The substrate is capable of supporting a planar mode having a planar-mode frequency. A plurality of nanofeatures is associated with the surface, and each of nanofeatures exhibits a localized-surface-plasmon mode having a localized-surface-plasmon frequency approximately equal to the planar-mode frequency.
摘要:
An optical coupling system and method of fabrication are included. The optical coupling system includes a substrate layer and an optical waveguide material overlying the substrate layer. The optical waveguide material can include a grating. The system also includes a cover material overlying the optical waveguide material to couple an optical signal to the optical waveguide material via the grating at a coupling angle. Approximately zero energy of the coupled optical signal is lost in the substrate layer due to a combination of the coupling angle and a difference in refractive indices between the cover material and the substrate layer.
摘要:
Light-detection systems that do not destroy the light to be detected or change the propagation direction of the light are described. In one aspect, a light-detection system includes an optical element composed of a substrate with a planar surface and a polarization insensitive, high contrast, sub-wavelength grating composed of posts that extend from the planar surface. The posts and/or lattice arrangement of the posts are non-periodically varied to impart orbital angular momentum and at least one helical wavefront on the light transmitted through the optical element.
摘要:
An optical connector includes a first optical fiber and a second optical fiber. A first planar lens is positioned to operate on light exiting the first optical fiber to create a predetermined change in a wave front of the light. A second planar lens is positioned to accept the light from the first planar lens, the second planar lens focusing the light onto the second optical fiber. The first planar lens and second planar lens each include a regularly spaced array of posts with periodically varying diameters.
摘要:
A laser includes an active ring, a passive waveguide, and a reflector. The active ring is to generate light. The passive waveguide is associated with the active ring to capture generated light. The reflector is associated with the passive waveguide to cause captured light from the waveguide to be coupled into the active ring to trigger domination of unidirectional lasing in the active ring to generate light.