Abstract:
An electrolyte composition can be capable of becoming molten when heated sufficiently. The electrolyte can include at least one lithium halide salt; and at least one lithium non-halide salt combined with the at least one lithium halide salt so as to form an electrolyte composition capable of becoming molten when above a melting point about 350° C. A lithium halide salt includes a halide selected from F and Cl. A first lithium non-halide salt can be selected from the group consisting of LiVO3, Li2SO4, LiNO3, and Li2MoO4. A thermal battery can include the electrolyte composition, such as in the cathode, anode, and/or separator region therebetween. The battery can discharge electricity by having the electrolyte composition at a temperature so as to be a molten electrolyte.
Abstract:
A cell culture device can include: at least 3 distinct chambers between the top wall and bottom wall. The perimeter walls can include: an internal chamber defined by at least one porous internal wall; one or more boundary layer chambers having at least an inner boundary layer chamber defined by the at least one porous internal wall and at least one porous inner boundary layer wall, the at least one porous internal wall having a plurality of pores fluidically coupling the central internal chamber to the one or more boundary layer chamber; and an outer chamber.
Abstract:
A method of assaying wound healing can include: growing cells on the matrix in the first flow channel; introducing an agent that removes the matrix from the junction; introducing a matrix material into the second flow channel so as to form the second matrix in the second flow channel and junction; and detecting cellular migration into the junction onto the second matrix. The agent that removes the matrix can include a biomolecule or chemical agent. The method can include removing cells in the matrix in the junction before introducing the matrix material into the second flow channel. A bioactive agent can be introduced into the junction to determine if it modulates cellular migration and/or clot formation into the intersection openings of tissue and vascular channels.
Abstract:
The present disclosure provides a method of generating electricity from a long chain hydrocarbon, said method comprising contacting the liquid non-polar substrate with a plurality of enzymes, wherein at least one enzyme is non-electric current/potential enzyme that functions as a catalyst for chemical reaction transforming a first substrate or byproduct to a second substance that can be used with an additional electric current/potential generating enzyme.
Abstract:
A group of tertiary amine azides are useful as hypergolic fuels for hypergolic bipropellant mixtures. The fuels provide higher density impulses than monomethyl hydrazine (MMH) but are less toxic and have lower vapor pressures that MMH. In addition, the fuels have shorter ignition delay times than dimethylaminoethylazide (DMAZ) and other potential reduced toxicity replacements for MMH.
Abstract:
Methods of assaying the leukocyte adhesion cascade (LAC) and monitoring leukocyte rolling, adhesion, and/or migration can be implemented with an apparatus that includes an idealized microvascular network (IMN) of one or more interconnected idealized flow channels in fluid communication through a porous wall with a tissue space (e.g., idealized tissue space). The methods of assaying the LAC can be implemented with means for quantifying modulation of the leukocyte adhesion cascade. Methods of assaying the LAC can be implemented with the device and one or more active agents to monitor leukocyte rolling, adhesion, and/or migration in the presence of absence of the active agent. Migration can be through the idealized flow channels, through the porous wall, and/or into the tissue space.
Abstract:
An apparatus and method for assaying a tumor drug delivery vehicle comprises a synthetic microvascular network of interconnected flow channels in fluid communication through a porous wall with a tissue space containing animal cells and means for quantifying drug delivery from the microvascular network to the animal cells.
Abstract:
The present disclosure provides an aqueous based electrically conductive ink, which is essentially solvent free and includes a nano-scale conducting material; a binding agent; and an enzyme. In one embodiment, the ink includes at least one of a mediator, a cross-linking agent and a substrate as well. In one further embodiment, the present disclosure provides electrically conductive ink including a single walled, carboxylic acid functionalized carbon nanotube; 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride and N-hydroxy succinimide (NHS) ester; polyethyleneimine; an aqueous buffer; and glucose oxidase.
Abstract:
A synthetic microfluidic microvasculature network and associated methods mimic the structure, fluid flow characteristics, and physiological behavior of physiological microvasculature networks. Computational methods for simulating flow and particle adherence in synthetic and physiological microvascular systems and methods for determining parameters influencing particle adhesion and drug delivery are described with applications in the optimization of drug delivery and microvascular treatments and in describing disease mechanisms that affect the microvasculature.
Abstract:
Apparatus and methods are disclosed for mixing and self-cleaning elements in microfluidic systems based on electrothermally induced fluid flow. The apparatus and methods provide for the control of fluid flow in and between components in a microfluidic system to cause the removal of unwanted liquids and particulates or mixing of liquids. The geometry and position of electrodes is adjusted to generate a temperature gradient in the liquid, thereby causing a non-uniform distribution of dielectric properties within the liquid. The dielectric non-uniformity produces a body force and flow in the solution, which is controlled by element and electrode geometries, electrode placement, and the frequency and waveform of the applied voltage.