Abstract:
A system and method are provided for altering the optical characteristics of an Intraocular Lens (IOL), in situ, using laser techniques. Specifically, a computer-controlled laser unit either creates microbubbles, or converts inclusions, inside the IOL, to establish a predetermined optical barrier having a predetermined opacity. The resultant optical barrier is oriented in the IOL to control light passing through the IOL, and to thereby minimize or correct adverse optical effects that would otherwise be present.
Abstract:
A laser-assisted method for fully or partially separating tissue such as collagen-containing tissue is provided. In one embodiment, the method pertains to a capsolurorhexis whereby the laser-assisted method is applied to the lens capsule. A light-absorbing agent is added into or onto the tissue. A light beam with a wavelength capable of being absorbed by the light absorbing agent is then directed at the tissue to cause a thermal effect at the tissue following a predetermined closed curve with the goal to avoid irregularity or potential tears in the resulting rim of the tissue.
Abstract:
A system and method are provided for obviating Posterior Capsule Opacification (PCO) which require an Optical Coherence Tomography (OCT) device for imaging the interface surface between the posterior surface of an intraocular lens (IOL) and the capsular bag. Further, the OCT device is used to identify areas of relative opacity caused by a biological growth on the interface surface in the optical zone of the IOL. A laser unit is then used to direct the focal point of a femtosecond laser beam onto the areas of relative opacity to ablate the biological growth by Laser Induced Optical Breakdown (LIOB) to thereby obviate the PCO.
Abstract:
System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
Abstract:
Disclosed are ophthalmic devices configured to be implanted in an eye of a patient. In one embodiment, the ophthalmic device includes a mask configured to increase the depth of focus of the patient and comprising a highly fluorinated polymeric material in which the number of carbon-fluorine bonds equals or exceeds the number of carbon-hydrogen bonds in the highly fluorinated polymeric material. The highly fluorinated polymeric material can be resistant to degradation upon exposure to ultraviolet light. The mask further includes an aperture configured to transmit light and a portion configured to be substantially opaque to visible light and to surround at least a portion of the aperture.
Abstract:
System and method for making incisions in eye tissue at different depths. The system and method focuses light, possibly in a pattern, at various focal points which are at various depths within the eye tissue. A segmented lens can be used to create multiple focal points simultaneously. Optimal incisions can be achieved by sequentially or simultaneously focusing lights at different depths, creating an expanded column of plasma, and creating a beam with an elongated waist.
Abstract:
A lens for placement in a human eye, such as intraocular lens, has at least some of its optical properties formed with a laser. The laser forms modified loci in the lens when the modified loci have a different refractive index than the refractive index of the material before modification. Different patterns of modified loci can provide selected dioptic power, toric adjustment, and/or aspheric adjustment provided. Preferably both the anterior and posterior surfaces of the lens are planar for ease of placement in the human eye.
Abstract:
Disclosed are ophthalmic devices configured to be implanted in an eye of a patient. In one embodiment, the ophthalmic device includes a mask configured to increase the depth of focus of the patient and comprising a highly fluorinated polymeric material in which the number of carbon-fluorine bonds equals or exceeds the number of carbon-hydrogen bonds in the highly fluorinated polymeric material. The highly fluorinated polymeric material can be resistant to degradation upon exposure to ultraviolet light. The mask further includes an aperture configured to transmit light and a portion configured to be substantially opaque to visible light and to surround at least a portion of the aperture.
Abstract:
A method for using a laser to create a pocket in a patient's cornea is provided. The pocket is created using a femtosecond or a nanosecond laser. The laser ablates tissue within the cornea in a specific shape. The shape of the pocket can be determined by software to custom program a three-dimensional path of the laser. A variety of corneal pocket configurations or computer programmed shapes can be used accommodate various corneal lens shapes and sizes. An intracorneal lens can then be inserted into the pocket, in order to correct the patient's vision.
Abstract:
Disclosed are ophthalmic devices configured to be implanted in an eye of a patient. In one embodiment, the ophthalmic device includes a mask configured to increase the depth of focus of the patient and comprising a highly fluorinated polymeric material in which the number of carbon-fluorine bonds equals or exceeds the number of carbon-hydrogen bonds in the highly fluorinated polymeric material. The highly fluorinated polymeric material can be resistant to degradation upon exposure to ultraviolet light. The mask further includes an aperture configured to transmit light and a portion configured to be substantially opaque to visible light and to surround at least a portion of the aperture.