Abstract:
A wind direction and a wind speed are readily and accurately estimated at a desired position without using a wind direction and velocity sensor. Movement instruction means of a wind estimation system instructs an unmanned aerial vehicle (UAV), which includes a sensor unit that detects information about a position change, to move. Fall control means causes the UAV to free fall after the UAV is moved according to the instruction of the movement instruction means. Estimation means estimates at least one of a wind direction and a wind speed at a fall position based on the information about the position change detected by the sensor unit during a fall of the UAV.
Abstract:
The present invention relates to an environmental monitoring UAV system comprises a drone provided with an air monitoring platform that is adapted for taking air sample(s) by enforcing air to flow through or into at least one sampling medium, during the flight of said drone.
Abstract:
Systems and methods for using unassisted vehicles to assess damage in a particular location are described. According to certain aspects, the systems and methods may utilize an unmanned ground vehicle (UGV) and a plurality of unmanned aerial vehicles (UAVs). The UGV and the UAVs may be configured with various sensors to capture various damage or environmental data. The UGV and/or the UAVs may also transmit captured data to a central facility for processing. The UGV may serve as a mobile docking and recharging platform for the UAVs and may therefore extend the range and endurance of the UAVs. The UGV may be configured for remote operation, thus eliminating the need to send personnel into a potentially dangerous environment.
Abstract:
Platform (100; 200, 200′, 200″) configured to acquire images and/or radio signals and to be carried by lightweight aviation aircrafts, characterised in that it comprises housing means (1, 3; 22, 201, 202, 203, 31) that houses one or more acquisition sensors selected from the group comprising or consisting of cameras (5; 51; 32) configured to acquire still and/or moving images and radio signal receivers (62; 34) configured to acquire radio signals, said housing means (1, 3; 22, 201, 202, 203, 31) being configured to be coupled to a light aviation aircraft (540), said one or more acquisition sensors (5; 51; 32; 62; 34) being connected to processing means (6; 23) configured to receive sensing data from a position and motion sensing unit (10; 230) coupled to said one or more acquisition sensors (5; 51; 32; 62; 34), said processing means (6; 23) being configured to control and/or program, on the basis of the received sensing data, each acquisition sensor (5; 51; 32; 62; 34) so as to enable the same to acquire images and/or radio signals when such acquisition sensor (5; 51; 32; 62; 34) is in a determined position and is subject to oscillations having a velocity that is not larger in absolute value than a maximum oscillation velocity value, whereby a rate of variation of an actual aiming of such acquisition sensor (5; 51; 32; 62; 34) is not larger in absolute value than a respective maximum value of rate of variation of offset with respect to an ideal aiming at a target, so as to ensure focusing of such acquisition sensor (5; 51; 32; 62; 34) on an aimed area.
Abstract:
Innovative new systems and method of operating the systems, wherein the system comprises an airborne platform comprising an unmanned balloon; a payload that is separate from the unmanned balloon; a transceiver; first and second flight termination devices; at least two separate power sources for the first and second flight termination devices; a sensor; a processor; a pump; a valve; and a tether that when broken separates the unmanned balloon and the payload, are disclosed herein.
Abstract:
A flood warning system and method are described. The system obtains localized flood depth information and, based upon alert parameter information provided by registered users, creates personalized flood alerts for the registered users. The method uses ultrasound derived localized flood depth information and alert parameter information provided by registered users to provide personalized flood alerts to the registered users.
Abstract:
A spin stabilized aircraft may include a plurality of wings that passively spin stabilize the aircraft, causing the apparatus to move in a direction opposite that of a wind source. The aircraft may also include two or more propulsive arms that actively stabilize the aircraft in absence of wind or a decrease in altitude.
Abstract:
An unmanned aircraft system (UAS) making use of unmanned aerial vehicles (UAVs) for more than one task. The inventors discovered that an improved UAS could be provided by combining one or more of these three elements: (1) hot-swappable modular kits (e.g., a plurality of components useful in UAVs to perform particular user-selectable tasks); (2) an interconnection mechanism for each component with identification protocols that provides both a physical and a data connection; and (3) an intelligent system that interprets the identification protocols and determines the configuration for a selected task, error checking, airworthiness, and calibration. The system and associated methods for the task based drone configuration and verification reduces the possibility of task failure by an operator.
Abstract:
System and method for aiding the accuracy of airdrop missions by performing localized weather data collection in a column of air and then subsequently storing, decimating and forwarding the data to a remote location. A first aircraft flies to the geographic location of the desired airdrop, deploys an atmospheric conditions sensing dropsonde, collects the data from the dropsonde, stores that data, then transmits that data or a decimated subset of that data either once or any number of consecutive times, to a second aircraft located at a predetermined distance from the first aircraft.