Abstract:
Novel streamwater remediation systems and processes are presented. The disclosed systems involve design and placement of geometric volumes of porous media of variable hydraulic conductivity within the streambed to enhance hyporheic exchange (exchange of water from the stream or constructed urban waterway compartment to the porous media, or streambed, compartment). The disclosed systems may help improve water quality in various ways, for example through the removal of contaminants from water as it passes through the streambed. In some embodiments, contaminant removal is achieved by microbes and/or reactive geomedia incorporated into the streambed structures. By pairing hydrologic/flow structures with bacteria or reactive geomedia, diverse contaminants such as metals, nutrients, organics, pathogens, and more can be sorbed, deactivated, assimilated, transformed to harmless chemicals, and otherwise removed from the water. Because the structures are designed to return water to the stream after treatment, the stream water quality is improved by the structures.
Abstract:
A self-contained water polishing system includes at least a first containment basin that has an inlet for inflow of water from a collection source and contains calcium carbonate for treatment of water flowing through the system; at least a first polishing basin in communication with the containment basin and that contains at least a first pollutant collection substrate for treatment of water flowing through the system; and a vacuum pumping system in fluid communication with the containment and polishing basins that draws water through the polishing system.
Abstract:
A water purifier that includes a housing having an inlet and an outlet opposing each other, a filter disposed in the housing and connected to the inlet to reduce the flow rate of water introduced into the filter from the inlet, a separator disposed in the housing to store water discharged from the filter, a supply conduit disposed in the housing and connected to a central portion of the separator to provide a path through which the water in the separator is drained, and an ultraviolet light emitting diode (UV LED) module disposed in the housing to irradiate UV rays toward the water stored in the separator.
Abstract:
Portable disposable wastewater recycling techniques and systems are provided. Waste water returning to the surface during the process of hydraulic fracking or mining is routed through a portable water filtration system to remove impurities on site and to eject clean portable environmental safe water.
Abstract:
A tank for processing wastewater has reinforced side and end walls, a top wall and a floor. A flexible liner is mounted inside the tank. Regions of the top wall have reinforcing elements fixed thereto. The reinforcing elements have fixture elements integral therewith for suspending and supporting items in the interior of the tank.
Abstract:
Provided are electrochemical devices that are rechargeable, where the regeneration techniques are based on a batchwise application of current or current density to the cells, where there are a service mode where no current or current density is applied and a recharge mode where a current or current density is applied. Electrochemical and EDI systems according to the embodiments herein are suitable for deionization and/or purification of typical municipal tap quality water in applications where demand for purified, low-TDS water is intermittent. Such operations avoid the use of chemical additions for regeneration purposes. In addition the cells provided herein are amenable to small footprints for consumer and commercial applications such as: dishwashers, washing machines, coffee and espresso makers, ice makers, steam tables, car wash water sources, and steamers.
Abstract:
A water filtration assembly is provided including a bottom fluid container having a floor portion, an open top portion, and a sidewall. The sidewall defines an inwardly extending filter assembly support surface. At least one fluid container segment is provided for vertically stacking and engagement to the bottom container and other container segments. The fluid container segments also define an inwardly extending fluid assembly support surface. A first filter assembly for removing contaminates is disposable within the bottom fluid container, supported by the bottom container filter assembly support surface. At least one second filter assembly for removing contaminates is disposable within the container segment(s), supported on the container segment filter assembly support surface.
Abstract:
The waste water/storm water treatment system includes a plurality of treatment modules, each of which includes upper and lower tank members. Each tank includes an inlet with a spray bar at the upper end thereof, and a drainage member at the lower end thereof. Treated water moves from the drainage member in the upper tank through an inlet at the top of the lower tank. The outlet member of the lower tank is connected to a pump which is controlled by a switch, to move water to the next module in the system or to the drainage system. The tanks have metal-adsorbing inorganic media or agricultural media positioned therein, such as activated rice hulls, corn cobs and the like for adsorbing metals in the storm water/waste water.
Abstract:
The invention describes a new and simple method of construction of a stationary distillation unit and of a small portable distillation unit. The evaporation pans are made of simple materials and are covered with a transparent film. Additionally in the small portable unit its evaporation pan has a double bottom, which receives hot water. By connection of the evaporation pan with the solar collectors (12) its productive ability significantly increases. The portable and stationary desalination units of the invention use solar power exclusively and simultaneously produce two products: distilled water and salt. The exploitation of solar radiation occurs both in the part of the unit covered by the transparent film as well as in the use of hot water produced by the solar collector connected to it, thus speeding up the evaporation of sea water. The transparent film, besides helping increase and hold the heat inside the production space, also protects the production space from pollutants in the environment, and as a result the products do not need further processing before being sent to consumption. Besides the fact that each unit can be used as an autonomous production unit of distilled water and salt, the units can also function as sub-units of a production line of an unlimited number of sub-units, where their combined use functions as a large production unit of distilled water and salt.
Abstract:
A system and method for generating and dispensing a diluted electrolyzed solution, where the system includes a solution generator, one or more containers, and one or more dispensing stations separate from the solution generator. The solution generator generates and dispenses a concentrated electrolyzed solution to the container(s). The dispensing station(s) draw the concentrated electrolyzed solution from the container(s), dilutes the drawn concentrated electrolyzed solution, and dispenses the diluted electrolyzed solution.