摘要:
Methods and materials related to producing isobutyric acid are disclosed. Specifically, isolated nucleic acids, polypeptides, host cells, methods and materials for producing isobutyric by direct microbial fermentation from a carbon source are disclosed.
摘要:
The biological production of beta-hydroxyisovalerate (βHIV) using a non-natural microorganism. The non-natural microorganism for the biologically-derived βHIV provides more beta-hydroxyisovalerate synthase activity than the wild-type parent. The non-natural microorganism can host a non-natural enzyme, such as the non-natural enzyme expressed in a yeast or bacteria, wherein the non-natural microorganism comprises an active βHIV metabolic pathway for the production of βHIV. The biological derivation of βHIV eliminates toxic by-products and impurities that result from the chemical production of βHIV, such that βHIV produced by a non-natural microorganism prior to any isolation or purification process has not been in substantial contact with any halogen-containing component.
摘要:
The present invention relates to a process of producing isobutanol, including: mixing water, lactate, an enzyme mixture including at least one enzyme, at least one cofactor, and at least one coenzyme, to prepare a reaction mixture; allowing catalytic conversions of lactate in the reaction mixture for a sufficient amount of time to produce isobutanol; and separating the isobutanol from a reactant obtained by the catalytic conversions, in which the conversion of lactate into isobutanol is in association with a NADH+/NADH and/or NADP+/NADPH regenerating system.
摘要:
Methods of screening for dihydroxy-acid dehydratase (DHAD) variants that display increased DHAD activity are disclosed, along with DHAD variants identified by these methods. Such enzymes can result in increased production of compounds from DHAD requiring biosynthetic pathways. Also disclosed are isolated nucleic acids encoding the DHAD variants, recombinant host cells comprising the isolated nucleic acid molecules, and methods of producing butanol.
摘要:
The invention relates to the fields of industrial microbiology and alcohol production. More specifically, the invention relates to improved production of butanol isomers by recombinant microorganisms containing an engineered butanol pathway and disrupted activity of the genes in pathways for the production of by-products during the fermentation when the microorganisms are grown in a fermentation medium containing acetate. In embodiments, recombinant microorganisms have an increased growth rate in a fermentation medium containing acetate as a C2 supplement.
摘要:
Ketol-acid reductoisomerase enzymes have been identified that provide high effectiveness in vivo as a step in an isobutanol biosynthetic pathway in bacteria and in yeast. These KARIs are members of a clade identified through molecular phylogenetic analysis called the SLSL Clade.
摘要:
The present disclosure provides recombinant bacteria with elevated 2-keto acid decarboxylase and alcohol transferase activities. Some recombinant bacteria further have elevated aldehyde dehydrogenase activity. Some recombinant bacteria further have reduced alcohol dehydrogenase and/or aldehyde reductase activity. Methods for the production of the recombinant bacteria, as well as for use thereof for production of various esters are also provided.
摘要:
Provided herein are polypeptides having ketol-acid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.
摘要:
Methods for the fermentative production of four carbon alcohols is provided. Specifically, butanol, preferably isobutanol is produced by the fermentative growth of a recombinant bacterium expressing an isobutanol biosynthetic pathway.
摘要:
A transformant obtainable by introducing one or more of the following DNAs (a), (b), and (c) into a coryneform bacterium as a host.(a) A DNA which encodes acetohydroxy acid synthase derived from Corynebacterium glutamicum and which has a mutation changing the glycine at position 156 to glutamic acid (G156E) in an amino acid sequence encoded by the DNA, or an analog thereof.(b) A DNA which encodes acetohydroxy acid isomeroreductase derived from Corynebacterium glutamicum and which has mutations changing the serine at position 34 to glycine (S34G), the leucine at position 48 to glutamic acid (L48E), and the arginine at position 49 to phenylalanine (R49F) in an amino acid sequence encoded by the DNA, or an analog thereof. (c) A DNA which encodes leucine dehydrogenase derived from Lysinibacillus sphaericus, or an analog thereof.