Abstract:
An oxygen lance assembly that is at least capable of moving towards or away from the object to be lanced, said assembly including a supply of gaseous oxygen and metallic tubing wherein the oxygen supply is continuously feed through the said tubing when the lance is in use, and the said lance assembly includes a reel, and the said metallic tubing is coiled upon and carried by the said reel, and when in use, the metallic tubing is continuously uncoiled from the said reel as the said metallic tubing is consumed during use.
Abstract:
The invention relates to a method for regulating the flow rate and for slowing down non-ferromagnetic, electrically conducting liquids and melt streams through magnetic fields, in particular in the tapping of metallurgical containers such as blast furnaces and melt furnaces. The method is characterized in that the melt stream is routed in a closed routing element using at least one stationary magnetic field with a constant polarity, at least one stationary magnetic alternating field or using a multi-poled magnetic travelling field, in such a way that the magnetic field lines transversally penetrate the melt flow across the entire cross section thereof and such that a voltage is induced in the melt stream by the magnetic fields, there being eddy currents induced thereby in the melt stream that are disposed radially and axially when a stationary magnetic field of constant polarity is used and that are disposed axially when a stationary alternating magnetic field or electromagnetic travelling field is used, and that due to the interactions between the magnetic fields and the eddy currents forces are generated that can affect the flow rate of the melt stream.
Abstract:
It is intended to provide a taphole mix capable of forming SiC bonds with minimum of an excess and a deficiency in components thereof, and excellent in drillability. A fine particle fraction having a particle diameter of 75 μm or less is comprised of three components consisting of a silicon nitride-based material, a carbon-based material, and roseki, or comprised of the three component, and one or more selected from the group consisting of an alumina-based material, a silicon carbide-based material, a rare-earth element oxide-based material, clay, a high-purity silica-based material containing SiO2 in an amount of 80 mass % or more, a boron compound-based material in an amount of less than 0.3 mass % with respect to 100 mass % of the silicon nitride-based material, and a metal powder in an amount of less than 10 mass % with respect to 100 mass % of the carbon-based material. Further, a total amount of 100 mass % of the three components in the fine particle range consists of 51 to 74 mass % of the silicon nitride-based material, 15 to 35 mass % of the carbon-based material, and 10 to 30 mass % of the roseki.
Abstract:
A high-temperature, heat-resistant fill material is disclosed. The high-temperature, heat-resistant fill material includes an alumina refractory waste material having one or more of a used alumina-magnesium-carbon material, a used high-alumina material and a used fused-grain alumina material is disclosed. A method for method for manufacturing a material is also disclosed.
Abstract:
A high-temperature, heat-resistant fill material is disclosed. The high-temperature, heat-resistant fill material includes an alumina refractory waste material having one or more of a used alumina-magnesium-carbon material, a used high-alumina material and a used fused-grain alumina material is disclosed. A method for method for manufacturing a material is also disclosed.
Abstract:
The present invention provides a method of high efficient slag scooping-up from liquid iron and a device for implementing said method. The two wings of slag rake mounted to the front end of cantilever descend side by side until beneath the surface of the liquid iron at a certain depth. The two rakes make swing movement respectively along the surface of liquid iron. When gradually moving close to each other in the course of swing movement, they get put together and clamp the solid slag. Then, driven by the cantilever, the two slag rakes which clamp the sold slag are brought to ascend until above the surface at a certain height. Finally they leave the space over the ladle and discharge the slag. The deslagging rate can reach over 90%. It just takes less than 3 minutes for the whole process of slagging-off. Additionally, the iron carried away in the process of slagging-off could be greatly reduced. The iron loss rate can be strictly controlled within 0.1%.
Abstract:
An improved thermal lance is made of a low carbon steel sheath having an internal bore and a thin cylindrical rod that is roll-formed from low carbon steel sheet. The rod being sized for conforming fit in the bore of the sheath and has a length dimension that is longer than the length of the sheath. The rod is inserted into the bore of the sheath and allowed to move axially within the sheath under propulsion of the pressurized oxygen to allow the rod to be burned at a rate independent of the burn rate of the sheath. A thermal lance assembly using the improved lance also includes a magnet located near the bottom of the lance housing to keep the lance from moving during routine handling and storage.
Abstract:
An improved vortex inhibitor for separating slag from molten metal during the discharge of molten metal through a nozzle includes a uniform castable refractory body with a generally tapering shape, a hollow chamber within the body and an elongated sacrificial member. The hollow chamber receives the sacrificial member or a mount for the sacrificial member. The refractory body and the sacrificial member combination in molten metal has a specific gravity less than the specific gravity of molten metal and is positioned narrow end downward when supported in molten metal. The hollow chamber can fill with molten metal to form a core that aids in orienting the body in a narrow end downward position. The sacrificial member align the with the area in which the vortex forms and minimizes interference with the flow through the discharge nozzle. The body preferably includes swirl obstructing surfaces.
Abstract:
The invention relates to a tapping tube for a metallurgical fusion pot. The aim of the invention is to provide a tapping tube which minimizes possible downtime and enables essentially identical tapping durations during the use of the tapping tube. To this end, the tapping tube functionally divides into two parts, namely a first part embodied according to prior art, and a second part that can be connected to the first part in an easily exchangeable (replaceable) manner, thus forming a complete tapping tube. According to the invention, the section of the tapping tube relating to the flow is the outlet end. The cross-section of the outlet end determines the outflow quantity and thus the outflow duration (tapping duration) of the metal melt.
Abstract:
A method and an apparatus for enhanced metallurgical processing of molten metal includes an enclosable ladle chamber (23) for reducing the escape of heat during transport of the ladle from a manufacturing vessel such as a furnace (13) to an intermediate processing (15) or refining station or during processing or transport to a receptacle vessel such as a tundish (17). The method comprises introducing a refractory body into the ladle chamber (23), the body having an adjusted specific gravity having a reduced steel ballast to refractory material ratio that is less than required for a specific gravity required to buoyantly support the body in the molten metal. Preferably, the ratio provides a specific gravity greater than the specific gravity required to buoyantly support the body entirely in the slag layer. The method includes enclosing the ladle (22) for example, with a lid (90) and maintaining said refractory body in said ladle until substantially termination of the discharge of the molten metal from the vessel. Preferably, the method also includes intermediate refining such as introducing a balancing composition to the ladle before enclosing. The ratio of steel ballast and refractory material used to achieve the preferred specific gravity may also be adjusted in conjunction with other temperature-resistant or corrosion-resistant changes to the refractory body. For example, high temperature alumina may be used as a refractory material in a higher degree than in previously known bodies, a high temperature cement may be used to join the refractory material and ballast components, and a non-wetting agent made of carbonaceous or siliceous material may reduce deterioration of the body during the extended period of steel and slag contact in the ladle.