摘要:
Provided are a silicon nitride substrate made of a silicon nitride sintered body that is high in strength and thermal conductivity, a method of producing the silicon nitride substrate, and a silicon nitride circuit substrate and a semiconductor module that use the silicon nitride substrate.According to the silicon nitride sintered body, in a silicon nitride substrate consisting of crystal grains 11 of β-type silicon nitride and a grain boundary phase containing at least one type of rare earth element (RE), magnesium (Mg) and silicon (Si), the grain boundary phase consists of an amorphous phase 12 and a MgSiN2 crystal phase 13; the X-ray diffraction peak intensity of any crystal plane of a crystal phase containing the rare earth element (RE) is less than 0.0005 times the sum of the diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride; and the X-ray diffraction peak intensity of (121) of the MgSiN2 crystal phase 13 is 0.0005 to 0.003 times the sum of the X-ray diffraction peak intensities of (110), (200), (101), (210), (201), (310), (320) and (002) of the crystal grains of the β-type silicon nitride.
摘要:
A sintered material based on silicon carbide (SiC) reactively sintered between 1,100° C. and 1,700° C. to form a silicon nitride binder (Si3N4), intended in particular for fabricating an aluminum electrolysis cell, including 0.05% to 1.5% of boron, the Si3N4/SiC weight ratio being in the range 0.05 to 0.45.
摘要翻译:基于碳化硅(SiC)的烧结材料在1100℃和1,700℃之间反应烧结以形成氮化硅粘合剂(Si 3 N 4),特别用于制造铝电解槽,包括0.05%至1.5%的硼 ,Si 3 N 4 / SiC重量比在0.05〜0.45的范围内。
摘要:
A sintered refractory block based on silicon carbide (SiC) with a silicon nitride (Si3N4) bond, for the manufacture of a aluminium electrolysis vessel, characterized in that it comprises, expressed in percentage by weight, at least 0.05% boron and/or between 0.05 and 1.2% calcium.
摘要翻译:一种基于具有氮化硅(Si 3 N 4)键的碳化硅(SiC)的烧结耐火块,用于制造铝电解容器,其特征在于,其包含以百分比表示的至少0.05%的硼和/或在 0.05和1.2%的钙。
摘要:
Silicon nitride materials with high strength, fracture toughness values, and Weibull moduli simultaneously, due to unique large grain reinforcing microstructures and well engineered grain boundary compositions. The invention demonstrates that, surprisingly and contrary to prior art, a silicon nitride material can be made which simultaneously has high strength above about 850-900 MPa, a Weibull above about 15 and high fracture toughness (above about 8 and 9 MPa·m1/2), and has reinforcing grains longer than 5 μm, typically longer than 10 μm in the microstructure without compromising its properties and reliability. The product of this invention can be processed using a variety of densification methods, including gas-pressure sintering, hot pressing, hot isostatic pressing, but is not limited to these, and does not require multiple heat treatments for all of these features to be achieved.
摘要:
It is intended to provide a taphole mix capable of forming SiC bonds with minimum of an excess and a deficiency in components thereof, and excellent in drillability. A fine particle fraction having a particle diameter of 75 μm or less is comprised of three components consisting of a silicon nitride-based material, a carbon-based material, and roseki, or comprised of the three component, and one or more selected from the group consisting of an alumina-based material, a silicon carbide-based material, a rare-earth element oxide-based material, clay, a high-purity silica-based material containing SiO2 in an amount of 80 mass % or more, a boron compound-based material in an amount of less than 0.3 mass % with respect to 100 mass % of the silicon nitride-based material, and a metal powder in an amount of less than 10 mass % with respect to 100 mass % of the carbon-based material. Further, a total amount of 100 mass % of the three components in the fine particle range consists of 51 to 74 mass % of the silicon nitride-based material, 15 to 35 mass % of the carbon-based material, and 10 to 30 mass % of the roseki.
摘要:
A silicon nitride sintered compact contains silicon nitride grains, and a sintering aid component in a range of 2 to 15 mass %. The silicon nitride grains include needle crystal grains each having a long diameter L of 10 μm or less and a ratio (L/S) of the long diameter L to a short diameter S of 5 or more, by 50% or more in area ratio in a crystalline structure of the silicon nitride sintered compact. The silicon nitride sintered compact is used as a sliding member like a bearing ball (2).
摘要:
It is intended to provide a taphole mix capable of forming SiC bonds with minimum of an excess and a deficiency in components thereof, and excellent in drillability. A fine particle fraction having a particle diameter of 75 μm or less is comprised of three components consisting of a silicon nitride-based material, a carbon-based material, and roseki, or comprised of the three component, and one or more selected from the group consisting of an alumina-based material, a silicon carbide-based material, a rare-earth element oxide-based material, clay, a high-purity silica-based material containing SiO2 in an amount of 80 mass % or more, a boron compound-based material in an amount of less than 0.3 mass % with respect to 100 mass % of the silicon nitride-based material, and a metal powder in an amount of less than 10 mass % with respect to 100 mass % of the carbon-based material. Further, a total amount of 100 mass % of the three components in the fine particle range consists of 51 to 74 mass % of the silicon nitride-based material, 15 to 35 mass % of the carbon-based material, and 10 to 30 mass % of the roseki.
摘要:
The invention concerns a sintered ceramic component of silicon nitride or sialon suitable as rolling element in a bearing and a manufacturing method for making such ceramic components. The ceramic component has high density and a homogeneous and fine microstructure, giving the component excellent mechanical properties. Manufacturing of the sintered ceramic component by SPS is cost-effective and rapid.
摘要:
A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.
摘要:
Synthetic sintered YPO4 composite materials comprising excess amount of Y2O3 in the composition and process for making such materials. The Y2O3-modified sintered YPO4 composite material exhibits improved mechanical properties compared to stoichiometric YPO4 materials. The modified YPO4 materials can be used to produce different components used in the glass-making process such as, for example, an isopipe.
摘要翻译:在组合物中含有过量的Y 2 O 3的合成烧结YPO 4复合材料和用于制造这种材料的方法。 与化学计量的YPO 4材料相比,Y2O3-改性的烧结YPO 4复合材料显示出改进的机械性能。 改性的YPO 4材料可用于生产用于制造玻璃制造工艺中的不同组分,例如等压槽。