Abstract:
A piece of furniture including a body and at least one flap that can be upwardly displaced by means of at least one actuating arm which is joined to the flap in an articulated manner and can preferably be pivoted about a horizontal axis. At least one actuating arm is subjected to the action of a spring device, and at least one electric drive acts on at least one actuating arm. A coupling device acts between the electric drive and the actuating arm, said coupling device having a free wheel for freely displacing the actuating arm into an open position and/or a closed position, in at least one rotary direction over a defined angular region.
Abstract:
The present invention provides for apparatus and methods for operating a garage door. An embodiment of an operating assembly for a door includes a shaft, a graduated drum, and an energy storing member. The shaft is coupled to the door such that the shaft rotates in a first direction as the door is opened and rotates in a second direction as the door is closed. The coupling of the shaft to the door is typically accomplished by a cable. The graduated drum is coupled to the shaft and the energy storing member is coupled to the graduated drum by another cable. The energy storing member is arranged such that the energy storing member stores energy as the door is closed and releases stored energy as the door is opened to assist in the raising and lowering of the door.
Abstract:
The invention relates to a hinge arrangement, in particular for a tailgate of a motor vehicle, having a first hinge part, in particular firmly connected to the body, which is knuckle-jointed with a second hinge part, and having an energy accumulator, the force application points of which are positioned in relation to both hinge parts in such a way that the force released upon its discharge supports the rotation of the two hinge parts around the hinge axis from a first rotation position, which corresponds in particular to a closed position of the tailgate, to a second rotation position, which corresponds in particular to the open position of the tailgate. To obtain useful improvements, a transposition device is proposed for transposing at least one force application point in one of the two rotation positions, so that after a transposition onto the hinge parts a force acts in the opposite rotation direction.
Abstract:
A garage door cable drum is disclosed for a sectional overhead door of a type having a substantially non-linear lift-weight to lift-height characteristic. The drum includes a generally spiral cable groove having a variable minor radius. The groove minor radius at any intermediate point along the groove is sized to provide a lift-cable moment arm that yields a corresponding cable lift force that is slightly less than an instantaneous lift weight of the garage door at any intermediate door elevation.
Abstract:
A mechanism and method for operating a track-mounted door is disclosed. The mechanism includes a pair of side drums that are connected by first cables to the bottom of the door. The side drums are coaxially mounted on a shaft for simultaneous rotation with a pair of cable drums. The cable drums are connected to high pressure gas struts by second cables. Each second cable is carried around a shiv wheel that slides along a guide track as the second cable moves. Each shiv wheel is operatively connected to one of the gas struts. As the shiv wheel moves along the guide track toward the cable drum, the gas strut is charged. As the shiv wheel moves away from the cable drum, the gas strut is discharged. A standard electric motor and screw driven lift-arm is used to initiate the opening and closing of the door. The charged gas strut stores sufficient energy to overcome friction and gravity to assist the electric motor and lift-arm to open the door.
Abstract:
A method and system for controlling the descent of a moveable element pivotally attached to a rigid structure is described herein. The moveable element is directly attached to the rigid structure, and is then connected to a compressible strut, which is attached to a linkage connected to the rigid structure. The descent of the moveable element is controlled using a microcontroller and a motor attached to the linkage, and the control path for the linkage is selected based on a comparison of the angle between the linkage and rigid structure and the angle between the moveable element and the rigid structure.
Abstract:
An opening and closing apparatus for vehicle lid includes a lower base adapted to be mounted on a body panel of the vehicle and arranged to an opening of an inner space of the vehicle, first and second hinge links rotatably connected to the lower base at each one end of the respective first and second hinge links, an upper base attached to the vehicle lid formed for closing the opening of the inner space and connected to each the other end of the respective first and second hinge links, a motor for providing a drive to the first hinge link, a drive transmitting member provided between the motor and the first hinge link for transmitting the drive from the motor to the first hinge link, a normally section torque transmitting mechanism provided between the drive transmitting member and the first hinge link for transmitting the drive to the first hinge link at a point of force reaction through the normally section torque transmitting mechanism after the drive transmitting member is rotated with a predetermined angle while the vehicle lid in a fully-opened state is under closing operation and a close-start section torque transmitting mechanism provided between the drive transmitting member and the upper base for directly pressing the upper base at a point of force reaction through the close-start section torque transmitting mechanism that a distance from a center point of the rotation of the upper base is longer than a distance of the point of force reaction through the normally section torque transmitting mechanism from the center point of the rotation of the upper base before the drive transmitting member is rotated with the predetermined angle while the vehicle lid in the fully-opened state is under closing operation.
Abstract:
This invention relates to an overhead door closer with slide arm assembly (1) having a toothed pinion (6) that is eccentrically supported and presents a circular rolling curve, which pinion meshes with a toothed rack (5) arranged at a piston (4). The invention concentrates on a particular embodiment of the rolling curve and of the teeth (9) of the toothed rack (5) in adaptation to a toothing of the pinion (6). Furthermore, the invention concentrates on an improved embodiment of the delayed closing operation in order to achieve an optimized movement pattern of the piston (4) within the housing (2) of the overhead door closer with slide arm assembly (1).
Abstract:
A power-operated system for actuating the rear doors or liftgates of motor vehicles includes a strut assembly having two struts, each strut mounted on one side of the door between the door and the vehicle's door frame. One end of each strut is connected to a powered rotating arm. To open the door, the rotating arms change the angular orientation of the struts such that they have a substantial mechanical advantage. In this position, the force provided by the struts overcomes the weight bias of the door, thus opening the door. To close the door, the rotating arms change the angular orientation of the struts such that the struts have a decreased mechanical advantage, reducing the force provided by the struts, and therefore causing the door to fall closed under its own weight bias. A control system for controlling the power-operated system is also disclosed.
Abstract:
The invention relates to an electromechanical swing leaf operator having a door closer (1) with an eccentrically supported pinion (6) that presents a circular rolling curve and meshes with a toothed rack (5) being disposed at a piston (4), whereby a particular execution of the rolling curve and of the teeth (9) of the toothed rack (5) in adaptation to a toothing of the pinion (6) is achieved. With the intention to realize an optimized moving course of the piston (4) in the housing (2) of the door closer (1) an improved execution of the delayed closing operation is provided.