Abstract:
Apparatus and method for radiometrically calibrating an imaging sensor array using the sun as a calibration light source in an optical system of the type having an accessible real conjugate of the entrance pupil, includes a flux concentrator for concentrating the sunlight. A flux modulator modulates the intensity of the concentrated sunlight and a flux relay for relaying the intensity modulated sunlight to the real conjugate of the entrance pupil of the optical system. A flux diffuser located at the real conjugate of the entrance pupil of the optical system illuminates the imaging sensor array with diffuse intensity modulated sunlight for calibrating the imaging sensor. A radiometric calibration assembly is proposed to calibrate an imaging sensor array of an earth imaging system. The calibration assembly comprises a flux concentrator, a flux modulator, a flux relay lens and a flux diffuser located within a conjugate pupil of the earth imaging system. The flux concentrator transfers solar flux to the flux modulator, which modulates the flux to a number of controlled, deterministic levels. The flux relay lens transfers the modulated flux to the flux diffuser. The diffused flux illuminates the imaging sensor array, resulting in electrical signals that provide information to allow accurate calibration for use in imagery.
Abstract:
A power supply circuit for a liquid crystal welding lens or shutter develops a relatively low voltage AC signal for driving or powering the liquid crystal shutter to the clear state and two relatively higher or larger magnitude AC electrical signals for initially driving the shutter to the dark state and then for maintaining the shutter in the dark state; a variable frequency circuit for varying the frequency of the driving signal to the shutter to minimize power usage in the dark state and to avoid flicker in the clear state; and power saving and battery level indicator features are included.
Abstract:
An electromagnetic wave detection apparatus 10 includes a first propagation unit 16, a second propagation unit 17, a first detector 19, and a second detector 20. The first propagation unit 16 propagates electromagnetic waves incident on a reference surface ss in a particular direction using each pixel px. The second propagation unit 17 includes a first surface s1, a second surface s2, a third surface s3, a fourth surface s4, a fifth surface s5, and a sixth surface s6. The first surface s1 propagates electromagnetic waves incident from a first direction in a second direction and propagates electromagnetic propagated in a third direction in a fourth direction. The second surface s2 separates electromagnetic waves propagated in the second direction d2 and propagate electromagnetic waves in a third direction d3 and a fifth direction d5. The first detector 19 detects electromagnetic waves emitted from the third surface s3. The second detector 20 detects electromagnetic waves emitted from the sixth surface s6.
Abstract:
A turbine engine including a stationary component having a probe opening, a plurality of rotor blades rotatable relative to the stationary component, and a sensor assembly disposed within the probe opening. The sensor assembly includes a sensor and a shutter mechanism having a shutter frame with a sensing window and at least one leaf member coupled to the shutter frame. The sensor assembly includes an actuator including a rotatable member having a receiving slot and a stator having a stopper member within the receiving slot. The rotatable member rotates relative to the stator over a range of motion defined relative to the stopper member, and the rotatable member is coupled to the at least one leaf member such that rotating the rotatable member in a first direction uncovers the sensing window, and such that counter-rotating the rotatable member in a second direction covers the sensing window with the at least one leaf member. Selectively covering the sensor when not in use protects the sensor from exposure to harsh conditions, extending its operative life.
Abstract:
An optical head for receiving an incident light is provided. The optical head comprises a reflective diffuser and a reflector disposed to face the reflective diffuser. The reflective diffuser is disposed in an optical path of the incident light and shields the reflector from the incident light. The reflective diffuser converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the reflective diffuser and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
An optical head for receiving incident light is provided. The optical head comprises a transmissive cosine corrector and a reflector disposed to face the transmissive cosine corrector. The transmissive cosine corrector is disposed in an optical path of the incident light and shields the reflector from the incident light. The transmissive cosine corrector converts the incident light to scattered light having a Lambertian pattern. The reflector has an optical output section that transmits the scattered light and a reflective section that reflects the scattered light to the transmissive cosine corrector and/or the other portions of the reflective sections. An optical system using the optical head is also provided.
Abstract:
An electronic device uses one or more infrared sensors to detect infrared light from a person's body (e.g., a user's finger) to initiate a function of the electronic device. According to an implementation, the housing of the electronic device includes a flexible portion that opens an aperture in response to external pressure (e.g., a user pressing down on the flexible portion) to allow infrared light from the person's body to reach an infrared sensor. When the infrared sensor detects the infrared light, it generates a signal in response. A processor of the electronic device receives the signal and, in response, initiates a function of the electronic device. The function may be any function that the electronic device is capable of performing, such as a power-on function, a camera function, changing the speaker volume, and launching an application.
Abstract:
An optical sensing device for using light to locate objects or features in a field of view comprises a light source; a controllable lens having two states and being controllable between them, for example a multifocal lens having two or more foci for focusing light from the light source; and a sensor able to sense light reflected from an object, to determine information of the object. The use of two or more foci adds dynamic range to optical sensing to allow for reliable detection over a wide range of distances.
Abstract:
With the object of preventing deterioration of or damage to a photodetector caused by excessive light by more reliably preventing the excessive light from entering the photodetector, a microscope of the present invention is provided with a high-sensitivity detector, such as an HPD, a GaAsP, an EM-CCD or the like, that detects observation light coming from a specimen, a box-shaped casing that has an opening that allows contained items to be placed therein and removed therefrom and that covers the high-sensitivity detector, a door that can close off the opening of the casing, a switch that restricts light detection by the high-sensitivity detector by turning on and off a drive voltage to be applied to the high-sensitivity detector, and an opening restricting mechanism that allows the opening of the casing in the closed state imposed by the door to be opened only when the light detection by the high-sensitivity detector is restricted by the switch.