Abstract:
In an illuminance sensor, a photoelectric converter (1) includes three photosensors (PS), and each photosensor (PS) outputs a current as a difference between photocurrents generated in two photodiodes (PDA, PDB) having different light reception characteristics. Ratios between light receiving areas of the two photodiodes (PDA, PDB) in the three photosensors (PS) are different from each other, and the sum of positive currents among output currents of the three photosensors (PS) is constant for a given illuminance, regardless of the type of light source. A computation control unit (7) obtains illuminance based on the sum of the positive currents among the output currents of the three photosensors (PS).
Abstract:
A measuring transducer for detecting the formation of foam on a liquid, which is movably inserted into the liquid and the density of which is predetermined, or can be set, such that the measuring transducer floats on the surface of the liquid, wherein a device for determining the luminous flux incident on the top side of the measuring transducer is provided to detect the formation of foam on the liquid which, in many cases, is a process sequence property that is important for process optimization, and wherein an evaluation device of the measuring transducer is configured to output a signal for indicating the formation of the foam when the light flux determined undershoots a predefined threshold value.
Abstract:
Circuitry to control reflective optical sensors is provided that reduces false detections due to ambient light without compromising the performance of the optical sensors to detect dark materials. A reflective optical sensor includes an emitter LED and photo-detector arranged to receive light from the LED that is reflected by an object being detected. A first input of a comparator is coupled to the output of the photo-detector. A second input of the comparator is coupled to the output of the photo-detector through a filtering circuit. The filtering circuit operates to filter the detector's output and adaptively adjust the trigger threshold of the comparator, thereby enabling the photo-detector to be sensitive enough to detect dark mail pieces, i.e., those mail pieces that are minimally reflective, while being immune to repeated false triggers due to excessive ambient light.
Abstract:
A pixel circuit for a depth sensor operating in a detection period and an output period in either a first operating mode (high incident light intensity) or a second operating mode (low incident light intensity). The pixel circuit includes a light receiving unit generating charge in response to the incident light, a signal generation unit accumulating charge in a FDN in response to a transmission signal, reset signal and selection signal during the detection period, and generating an analog signal having a level corresponding to a voltage apparent at the FDN during the output period, and a refresh transistor coupled between a supply voltage and the light receiving unit and discharging charge to the supply voltage in response to a refresh signal.
Abstract:
A method and device for distinguishing a self-luminous object from a reflecting object in a detection range of a camera of a vehicle having at least one headlight, when the object is illuminated by the headlight, are described. The method includes a step of receiving a relative position of the object with respect to the vehicle and a brightness value of the object from the camera. Furthermore, the method includes a step of comparing the brightness value to a self-luminous value expected at the relative position and a reflection value expected at the relative position. Moreover, the method includes a step of classifying the object as self-luminous, if the brightness value is within a self-luminous tolerance range about the self-luminous value or as reflecting, if the brightness value is within a reflection tolerance range about the reflection value.
Abstract:
Provided is a dimming helmet visor incorporating optical shutter technology therein for instantaneous conversion from a clear state to a dark state and vice versa. These visors find utility in helmets for anyone in changing lighting conditions outdoors, especially motorcyclists. The visor's optical shutter display is connected to a photodiode and a battery with both automatic and manual adjustment functionalities. A manual on/off switch is provided for power management. The photodiode responds to light intensity above a certain threshold and switches from a clear state to dark state in a matter of milliseconds once this threshold is reached.
Abstract:
An image forming apparatus includes a sensor having a light emitting section for irradiating a detection area and a light receiving section for outputting a light sensitive signal indicative of the amount of the light received from the detection area. A sensor adjustment section adjusts the sensitivity of the sensor by varying the set value of an adjustable characteristic value associated with the sensitivity, based on explorative measurement of the adjustable characteristic value corresponding to a predetermined reference level of the light sensitive signal. If an estimation section estimates that the amount of a leakage current generated on the light receiving section is larger than a reference amount, a mitigation section mitigates the influence of the leakage current on the explorative measurement, by at least one of adjustment of the light receiving section for reduction of the leakage current and modification of the predetermined reference level.
Abstract:
Provided is a photodetection device which is small in size and has excellent sensitivity. The photodetection device (10) puts cathode terminals of photodiodes (1 and 2) having different spectral characteristics, or a photodiode (1) provided with an optical filter and a photodiode (2) provided with a light shield layer, into an open end state, and detects light intensity of a desired wavelength region according to a difference in electric charges that have been stored in those photodiodes in a given period of time. Since the photodiodes 1 and 2 store electric charges, even if a photocurrent is small, it is possible to store the photocurrent to obtain the electric charges required for detection, permitting achievement of downsizing and high detection performance of the semiconductor device on which the photodiodes 1 and 2 are formed. It is also possible to realize a wide dynamic range by making the electric charge storage time variable according to the light intensity, to suppress electric power consumption by intermittently driving an element required for differential detection at the time of differential detection, and to reduce an effect from flicker by averaging the output.
Abstract:
It is an object to provide a photoelectric conversion device which detects light ranging from weak light to strong light. The present invention relates to a photoelectric conversion device having a photodiode having a photoelectric conversion layer, an amplifier circuit including a thin film transistor and a bias switching means, where a bias which is connected to the photodiode and the amplifier circuit is switched by the bias switching means when intensity of incident light exceeds predetermined intensity, and accordingly, light which is less than the predetermined intensity is detected by the photodiode and light which is more than the predetermined intensity is detected by the thin film transistor of the amplifier circuit. By the present invention, light ranging from weak light to strong light can be detected.
Abstract:
A system for auto-commissioning a light fixture may position the light fixture based on sensor data received from at least one sensor. In order to focus the light fixture on a target location, the system may vary the position of the light fixture and determine a position of the light fixture where the light level received by the photosensor reaches a determined light level. The system may adjust a light characteristic of light emitted by the light fixture so that the color of light received by the photosensor at the target location matches a target light characteristic, such as color or intensity. The system may determine a focus position and a light characteristic for multiple target locations. The system may auto-commission multiple light fixtures.