Abstract:
The optical reflectance or transmittance concentration analyzer includes an acousto-optical tunable filter (AOTF). The AOTF is tuned by a computer controlled digital-to-analog converter through a tunable sweep oscillator. Tuned beams can be selected according to their direction of propagation or according to their polarization behavior. Therefore, if desired, a pair of crossed polarizers can be used to select one of the tuned monochomatic light beams that pass from a light source through the AOTF. To obtain rapid wavelength change along with electronic chopping or wavelength modulation, the digital-to-analog converter output is combined with the output of a high speed signal generator. The modulated light is conducted directly or through a fiber optic cable to the location of the optical measurement and impinges upon the sample where it is reflected or transmitted. The emerging light is collected onto detector(s). The measurement time interval can be distributed among the required wavelengths or wavelength pairs according to an unequal scheme to decrease the error of the result in a calibration equation. The apparatus is particularly adaptable for use as an on-line concentration monitor in industrial process control because of its stability, efficiency and ability to perform quick analyses.
Abstract:
A method of using an opto-acoustic apparatus for measuring, in an environment containing extraneous noise, the concentration of a gas in a mixture of gases or of particulates in a gas. The method is constituted by the steps of providing a measuring opto-acoustic cell having gas inlet and gas outlet for receiving and discharging a gas containing a particulate or a mixture of gases containing a gas the concentration of which is to be measured, directing laser rays from a laser ray generating device into the opto-acoustic cell, placing a chopper in the path of the laser rays between the device and the cell and operating the chopper for chopping the laser rays at a frequency corresponding to the resonant frequency of the cell, providing a narrow band microphone having a resonator with a narrow resonance frequency range including the resonant frequency of the cell and sufficiently narrow to exclude unwanted noise signals from the environment in which the cell is located, placing the microphone on the cell for detecting the sound signal generated by changes in the internal pressure of the cell, and determining from the sound signal the concentration of the gas in the mixture of gases or the concentration of the particulates in the gas.
Abstract:
A double-beam spectrophotometer for spectral analysis of a sample in the infrared region is provided in which to eliminate errors in measurement of the absorbance of the sample caused by undesired thermal radiation from the sample itself, first and second sectors are used for division and recombination of beam paths and coordinated such that a detector which receives a beam along the combined beam path produces output signals consisting of components having a frequency f associated with the cycle of operation of the sectors and components having a frequency 2f, those components having frequencies f and 2f are independently derived out of the detector output signals, and the ratio of the components is computed, thereby obtaining the ratio of intensity of sample beam to reference beam independent of the undesired thermal radiation.
Abstract:
Spectral analysis of a beam of radiation is carried out by splitting the beam of radiation into its respective spectral components and by applying a characteristic modulation to each of the spectral components before allowing them to fall on a common detector. The super-imposed signals generated by the detector and representative of the spectral components are then electronically segregated by reference to the characteristic modulations that have been applied to the individual spectral components. This is conveniently done by generating a series of modulated reference signals which have been modulated in exactly the same way as the spectral components of interest. The technique is not restricted to optical spectra but can also be used, for example, for X-ray spectra and mass spectra.
Abstract:
The invention relates to a fiber optical temperature measuring device of the pyrometer type, comprising a transducer section and an electronic section, which are mutually interconnected by at least one optical fiber. The electronic section includes at least one light source and the light therefrom is arranged to be emitted via the optical fiber to the transducer, and in the transducer at least part of the light is reflected back into the fiber and is conducted through the optical fiber together with an output measuring signal from the transducer to one or more detectors included in the electronic section.
Abstract:
A fast spectroscopic analyzer wherein chopped infrared light is passed through a sample cell, a rotating variable filter and to a detector. The angular position of the filter corresponds to various wave lengths of light and is used to synchronize a recording system, recording signals of interest.
Abstract:
The disclosure provides a photoelectric sensor capable of resisting high-frequency light interference. It comprises a transmitting tube, double receiving tubes, a filter arranged at the front ends of the double receiving tubes for filtering optical signals, a band-pass filter circuit coupled to the double receiving tubes, a differential amplifier coupled to the band-pass filter circuit, a control module for controlling the synchronous receiving of optical signals, and a sensor hysteresis error setting system for improving the anti-interference performance of sensors; the control module further collects and obtains ambient light interference signals and sets an interference signal threshold value, and when it is detected that the amplitude of the collected ambient light interference signals is larger than the set interference signal threshold value, the control module discards the light signals lower than the interference signal threshold value after the interference signals are overlaid.