Abstract:
The present invention discloses a method for constructing a completely micromachined MCP that is activated with thin-film dynodes wherein the interchannel regions are first dry etched in the substrate, resulting in channel pillars. The etched portions of the substrate are then back filled and the channel pillars are thereafter removed to produce a micromachined perforated microchannel plate. The technique may be employed to produce an active element for an integrated image tube or photomultiplier tube.
Abstract:
A photomultiplier has a focusing electrode plate for supporting focusing electrodes, provided between a photocathode and a dynode unit. Since the focusing electrode plate has holding springs which are integrally formed with the focusing electrode plate, resistance-welding becomes unnecessary to prevent field discharge. A concave portion is formed in a main surface of the focusing electrode plate to arrange an insulating member sandwiched between the focusing electrode plate and the photoelectron incidence side of the dynode unit and partially in contact with the concave portion. With this structure, discharge between the focusing electrode plate and the dynode unit can be prevented.
Abstract:
A photomultiplier which can be easily made compact has a dynode unit having a plurality of dynode plates stacked in an electron incident direction in a vacuum container fabricated by a housing and a base member integrally formed with the housing. Each dynode plate is constituted by welding at least two plates overlapping each other. The welding positions do not overlap each other in the stacking direction of the dynode plates. With this structure, field discharge at the welding portions between the dynode plates can be prevented to reduce noise.
Abstract:
A bundle of multiglass fibers are assembled within an outer glass tube. An intermediate glass structure is interposed between the bundle of multifibers and the outer glass tube. The intermediate glass structure has a softening temperature within the range of minus 5% and plus 15% of the softening temperature of the multifibers and less than the softening temperature of the outer glass tube. The assembly is heated and the outer glass tube is pressurized from the outside to produce a uniform compressive force for fusing the multifibers and the intermediate glass structure around the multifibers. The intermediate glass structure may include a glass tube, multiple layers of glass fibers or an inner layer of glass fibers surrounded by a glass tube.
Abstract:
A microchannel electron multiplier is formed by placing into a glass tube a plurality of bundles optical fibers, each having an etchable glass core and a glass cladding which is non-etchable when subjected to the conditions used for etching the core material. The fiber bundles located around the inside edge of the glass tube are replaced by support fibers having both a core and a cladding of a material which is non-etchable under the above-described conditions. The assembly of the tube, bundles and support fibers is heated to fuse the tube, bundles and support fibers together. The etchable core material is then removed and the assembly sliced into wafers. The inner surface of each of the claddings which bound the channel formed after removal of the core material is rendered electron emissive by reduction of the lead oxide by hydrogen gas. Metal films are deposited onto the opposed surfaces of each of the wafers to form contacts.
Abstract:
An imaging tube for amplifying and observing a diminished light image and a streaking tube for analyzing the light intensity distributions of light sources with elapsing of time. In order to avoid adhesion of alkali metal to the micro-channel-plate in fabrication of the imaging tube and to avoid adhesion of alkali metal to the deflection electrode in the streaking tube, a separation wall and a lid movable on the separation wall are used.
Abstract:
An imaging tube for amplifying and observing a diminished light image and a streaking tube for analyzing the light intensity distributions of light sources with elapsing of time. In order to avoid adhesion of alkali metal to the micro-channel-plate in fabrication of the imaging tube and to avoid adhesion of alkali metal to the deflection electrode in the streaking tube, a separation wall and a lid movable on the separation wall are used.
Abstract:
A total service telephone answering system including answering machines, for carrying on a programmed telephone conversation with a respondent, having an interface with the telephone line, and a control for altering the course of the programmed conversation when a disconnect signal is passed by the interface. The system contemplates serving a multiplicity of incoming telephone with a number of line operator stations, with the capability of overflow calls being handled by the answering machines. The system also includes a concentrator which continuously sweeps the incoming telephone lines to select any line having an unanswered call, continuously sweeps the answering machines to identify an available machine, and then effects a connection between the selected telephone line and the available machine.
Abstract:
An electron multiplier device formed of the combination of a support made of high temperature-resisting electrically-insulating ceramic material and of a layer of secondary electron emitting semi-conducting glass material fused to the inner wall of the ceramic material and method of making; the multiplier device is further characterized in that the ceramic material and the glass material have substantially the same coefficient of expansion. The device is made by pouring molten semi-conducting glass into at least one channel in a ceramic support having a higher fusion point than that of the glass and the same coefficient of expansion, flowing the glass under pressure through the channel and cooling to leave a semi-conductor wall to the channel.
Abstract:
A channel-type electron multiplier made in the shape of a glass wafer having holes through a central portion thereof, and an imperforate glass border fused to the periphery of the wafer, the wafer glass having a thermal coefficient of expansion less than that of the border glass. In manufacture, a brief fast cooling step aids in the production of a strong, permanent bond between wafer and border.