摘要:
A porous separator for a fuel cell is provided and features the shape of a passage aperture formed in a flow field plate. The modified shape of the passage aperture minimizes destruction of a gas diffusion layer or a membrane electrode assembly attributable to stress concentration. The porous separator has a flow field plate that includes a first contact portion that is in contact with a gas diffusion layer or a membrane electrode assembly; a second contact portion that is in contact with a coolant channel; and a connection portion that is connected between the first contact portion and the second contact portion. Additionally, a passage aperture is formed in the connection portion, wherein a portion of an inside surface of the passage aperture protrudes toward a center of the passage aperture.
摘要:
A fuel cell includes a membrane electrode assembly including an electrolyte membrane and catalyst layers joined on both sides of the electrolyte membrane and a pair of separators disposed at both sides of the membrane electrode assembly to respectively form gas flow spaces where two types of power generation gases flow. An electrically conductive porous substrate folded in a corrugated shape is disposed in at least one of the gas flow spaces defined on both sides of the membrane electrode assembly, and a gas flow space in which the electrically conductive porous substrate is disposed is divided into a plurality of gas flow paths substantially parallel to a flow direction of the power generation gases.
摘要:
A production method of a porous layer material for forming a porous layer includes the steps of obtaining particles that contain carbon and a water-repellent resin by spray drying a mixed solution that includes the carbon and the water-repellent resin, producing a paste that includes the particles, and extruding or rolling the paste to obtain the porous layer material in a sheet-like form.
摘要:
The conductive porous layer for batteries according to the present invention comprises a laminate comprising a first conductive layer and a second conductive layer. The first conductive layer includes at least a conductive carbon material and a polymer. The second conductive layer includes at least a conductive carbon material and a polymer. The conductive porous layer satisfies at least one of the following two conditions: “the polymer in the first conductive layer is present with a high density at the surface of the layer in contact with the second conductive layer than at the surface not in contact with the second conductive layer” and “the polymer in the second conductive layer is present with a higher density at the surface of the layer in contact with the first conductive layer than at the surface not in contact with the first conductive layer.” This makes it possible to provide a conductive porous layer with good adhesion between the first conductive layer and the second conductive layer and with reduced film thickness variation in each conductive layer. The conductive porous layer of the present invention can be used for fuel cells, metal-air batteries, and the like.
摘要:
Disclosed is a solid oxide fuel cell which includes an inner electrode, a solid electrolyte, and an outer electrode, each being sequentially laminated on the surface of a porous support. The porous support contains forsterite, and further has a strontium element concentration of 0.02 mass % to 1 mass % both inclusive in terms of SrO based on the mass of the forsterite.
摘要:
Provided are separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a variety of applications including electrochemical storage and conversion. Embodiments provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation and for improving the cycle life and rate capability of electrochemical cells including silicon anode based batteries, air cathode based batteries, redox flow batteries, solid electrolyte based systems, fuel cells, flow batteries and semisolid batteries. Disclosed separators include multilayer, porous geometries supporting excellent ion transport properties, providing a barrier to prevent dendrite initiated mechanical failure, shorting or thermal runaway, or providing improved electrode conductivity and improved electric field uniformity. Disclosed separators include composite solid electrolytes with supporting mesh or fiber systems providing solid electrolyte hardness and safety with supporting mesh or fiber toughness and long life required for thin solid electrolytes without fabrication pinholes or operationally created cracks.
摘要:
Disclosed are a fuel cell separating plate having high temperature and acid resistance, and a method of manufacturing the same. The fuel cell separating plate includes a molded product manufactured from a mixture of expanded graphite and thermoplastic resin.The fuel cell separating plate and the method of manufacturing the same according to the present invention do not lower conductivity of the separating plate while decreasing a use amount of a conductive material. In addition, the fuel cell separating plate and the method of manufacturing the same simplify a manufacturing process and shorten manufacturing time.
摘要:
A fuel cell equipped with at least an air electrode side power collector layer, an air electrode catalyst layer, a polymer electrolyte membrane, a fuel electrode catalyst layer and a fuel electrode side power collector layer and provided with a porous body layer having a porous body at a liquid fuel side of the fuel electrode side power collector layer assumes a structure in which the porous body layer is provided with a gas flow velocity (superficial velocity in the layer) of 10 to 5000 cm/s at a differential pressure of 100 kPa. The porous body layer is a diffusion medium of a fuel into the fuel electrode catalyst layer and a discharge resistor of gases comprising carbon dioxide and steam which are electrode reaction products and a vapor of the liquid fuel in progress of electrode reaction. An interface of the gases and a gases layer are also provided.
摘要:
Provided are: a porous electrode substrate which has excellent handling properties and surface smoothness and satisfactory gas permeability and electrical conductivity, and enables the reduction of damage to a polymer electrolyte membrane when integrated into a fuel cell; and a process for producing the porous electrode substrate. Specifically provided are: a porous electrode substrate comprising a three-dimensional structure (Y-1) produced by bonding short carbon fibers through carbon and a three-dimensional structure (Y-2) produced by bonding short carbon fibers through carbon, wherein the three-dimensional structures (Y-1) and (Y-2) are layer stacked on and integrated with each other, the short carbon fibers form a three-dimensional entangled structure in the structure (Y-1), and the short carbon fibers do not form a three-dimensional entangled structure in the structure (Y-2); a process for producing the electrode base material; a precursor sheet for producing the electrode base material; a membrane-electrode assembly which involves the electrode base material; and a polymer electrolyte fuel cell.
摘要:
A fuel electrode for a solid oxide electrochemical cell includes: an electrode layer constituted of a mixed phase including an oxide having mixed conductivity and another oxide selected from the group including an aluminum-based oxide and a magnesium-based composite oxide, said another oxide having, supported on a surface part thereof, particles of at least one member selected from nickel, cobalt, and nickel-cobalt alloys.