摘要:
To reduce power consumption of a display device including a scan line driver circuit formed using either n-channel transistors or p-channel transistors when the scan line driver circuit outputs, to one of two kinds of scan lines, inverted or substantially inverted signals of signals output to the other of the two kinds of scan lines. The display device includes a plurality of pulse output circuits each of which outputs a signal to one of two kinds of scan lines and a plurality of inverted pulse output circuits each of which outputs, to the other of the two kinds of scan lines, an inverted or substantially inverted signal output from the each of the pulse output circuits. The plurality of inverted pulse output circuits operate with signals used for the operation of the plurality of pulse output circuits. Thus, through current generated in the inverted pulse output circuits can be reduced.
摘要:
A programmable driver for driving a solid state lighting device includes a processing circuit, a voltage feedback loop and a power stage. The processing circuit is configured to determine a voltage reference signal based on a nominal current setting and a predetermined power limit. The voltage feedback loop is configured to receive the voltage reference signal and to determine a difference between a reference voltage indicated by the voltage reference signal and a drive voltage of the solid state lighting device. The power stage is configured to limit maximum output voltage for driving the solid state lighting device based at least in part on the determined difference between the reference voltage and the drive voltage of the solid state lighting device provided by the voltage feedback loop.
摘要:
A current driver for a string of LEDs includes a first series connection of a first transistor and a first resistance and a second series connection of a second transistor and a second resistance. The first and second series connections are coupled in parallel between the string of LEDs and a voltage reference. An operational amplifier selectively drives the first and second transistors in response to a clock signal. A switch device driven by the clock signal alternately applies a reference voltage and a respective one of the voltages across the first and second resistances to inverting and non-inverting inputs of the operational amplifier in response to the clock signal. A storage circuit is coupled to the output of the operational amplifier to store the drive signals for the first and second transistors for application to the first and second transistors in the absence of output from the operational amplifier.
摘要:
A light emitting apparatus receives an external power. A switching unit is electrically connected with a light emitting unit to form a serial circuit. A first electrical connection element is electrically connected with the external power and the light emitting unit. A second electrical connection element is electrically connected with the external power and the switching unit. A sensing unit is electrically connected with the first electrical connection element, the second electrical connection element and the switching unit. When filament currents flow between two electrical input terminals of the first electrical connection element and between two electrical input terminals of the second electrical connection element, the sensing unit controls the switching unit to turn on to enable the light emitting unit to receive the external power and start to emit light. Thus, users can avoid the risk of electric shock when installing the light emitting apparatus.
摘要:
An LED-based luminaire is configured to direct light from an LED source downwardly. However, a portion of the luminaire intentially reflects part of the light upwardly toward a ceiling of a structure. A control circuit of an LED-based luminaire enables the luminaire to be dimmed by an off-the-shelf dimmer. The control circuit also determines when a temperature of the LED-based luminaire exceeds a desired temperature range, and employs a feedback circuit to reduce power delivery to the LEDs until the temperature is again within the desired temperature range.
摘要:
An embodiment of a driving device is proposed for supplying at least one regulated global output current to a load. The driving device includes programming means for programming a value of the global output current within a global current range. Reference means are provided for supplying a reference voltage, which has a value corresponding to the value of the global output current. Conversion means are then used for converting the reference voltage into the global output current. The conversion means may further include a plurality of conversion units for corresponding partial current ranges, which partition the global current range.
摘要:
Emergency lighting with a charging indicator circuitry comprises a power source module, a lighting circuit, a battery circuit, and an emergency switch circuit. The battery circuit includes charging indicator circuitry and a battery module; the power source module is connected with the battery module via the charging indicator circuitry. When the utility power is interrupted or a test switch is pressed, the light of the charging indicator circuitry goes out to indicate that the emergency lighting is in discharging status. When the utility power is supplied normally, if a battery within the battery module is in disconnected state, the light of the indicating circuitry goes out to indicate that the emergency lighting is in disconnected state. The charging indicator circuitry may be a simple light-emitting indicating circuit, has no need for much modification to the original circuit during manufacture and design, and may be simple and quickly-responsive.
摘要:
A lighting controller arranged to drive one or more light emitting semiconductors, the controller comprising a current source and/or a voltage source and a current and/or voltage sensor wherein the controller is arranged to drive the or each light emitting semiconductor using a substantially constant current or voltage and further arranged to either monitor the actual current passing through the light emitting semiconductor and the controller being arranged to monitor the voltage such that the disconnection or occurrence of faults within the or each light emitting semiconductor can be detected; or monitor the actual voltage across the light emitting semiconductor and the controller being arranged to monitor the current such that the disconnection or occurrence of faults within the or each light emitting semiconductor can be detected.
摘要:
A light-emitting diode (LED) driver circuit and a light apparatus including the LED driver circuit are provided. The light apparatus includes an LED array, an input unit, a rectifier, and a control circuit. The LED array includes LED devices connected to one another in series. The input unit receives an alternating current (AC) power source. The rectifier circuit full-wave rectifies the received AC power source signal and supplies the full-wave rectified AC power source signal to the LED array. The control circuit selectively lights the LED devices according to a voltage level of the full-wave rectified AC power source signal. The control circuit includes switching elements and comparators. The switching elements selectively force nodes between the LED devices to be grounded. The comparators turn-on one of the switching elements according to the voltage level of the full-wave rectified AC power source signal.
摘要:
A light emitting apparatus receives an external power. A switching unit is electrically connected with a light emitting unit to form a serial circuit. A first electrical connection element is electrically connected with the external power and the light emitting unit. A second electrical connection element is electrically connected with the external power and the switching unit. A sensing unit is electrically connected with the first electrical connection element, the second electrical connection element and the switching unit. When filament currents flow between two electrical input terminals of the first electrical connection element and between two electrical input terminals of the second electrical connection element, the sensing unit controls the switching unit to turn on to enable the light emitting unit to receive the external power and start to emit light. Thus, users can avoid the risk of electric shock when installing the light emitting apparatus.