Abstract:
An apparatus for holding an object to be processed, according to this invention is mounted in a plasma processing apparatus and includes a convex-shaped holder main body, first dielectric film, and second dielectric film. The holder main body has a holding portion which holds an object to be processed placed on it and a flange formed on the peripheral portion of the holding portion to fit with a focus ring. The first dielectric film attracts the object to be processed placed on the holding portion to the holder main body by a Coulomb force. The second dielectric film attracts the focus ring fitted on the flange to the holder main body by an attracting force larger than that of the first dielectric film using a Johnson-Rahbek force. The electrostatic attracting force of the focus ring for the holder main body is increased, so that the cooling effect is increased. A change in plasma processing characteristics over time in the vicinity of the focus ring can be eliminated, and the entire surface of the object to be processed can be processed uniformly.
Abstract:
A dual cup spin coating system for capturing a discharged flowable coating material in a spin coating process including a first outer cup and a second outer cup said first outer cup concentrically disposed around the second outer cup forming a first capture space arranged for capturing at least a portion of a discharged flowable coating material discharged from a process substrate at a first positive angle with respect to the process substrate in a spin coating process; and, an inner cup disposed concentrically within the second outer cup forming a second capture space arranged for capturing at least a second portion of the discharged flowable coating material discharged from the process substrate at a second positive angle less than about the first positive angle with respect to the process substrate in a spin coating process.
Abstract:
The invention concerns a method which consists in maintaining the two ends (2, 4) of the bar (1) on the end supports (3, 5) of a frame (10), one of the ends (2) being maintained fixed, and in driving the bar in rotation. The invention is characterised in that it consists further in drawing the bar (1) while spraying a coat on the bar, the drawing of the bar corresponding to an elongation of about 0.2 to 0.001%.
Abstract:
The invention concerns a method and a device in a paper machine, coating machine, intermediate winder, unwind stand of a slitter-winder, or in any other device for treatment of a web. In the event of disturbance, the web (P) is made to be wound in a controlled way around at least one web guide roll (18a).
Abstract:
A method of applying a layer of a flowable material to a substrate. The substrate is received with a rotatable chuck, and an amount of the flowable material is dispensed on to the substrate. The substrate is spun on the rotatable chuck, thereby spreading the flowable material across the substrate and conveying a surplus amount of the flowable material away from the substrate. An exhaust stream is created with a vacuum source. At least a portion of the surplus amount of the flowable material conveyed away from the substrate is entrained into the exhaust stream, which exhaust stream is conveyed into an exhaust system. A pressure drop is created in the exhaust stream across a vane anemometer within the exhaust system. The blow back of the entrained portion of the surplus amount of the flowable material from a downstream position in the exhaust system to the substrate is thereby reduced. Thus, positioning the vane anemometer in the exhaust system tends to create a sudden and distinct pressure drop across the vane anemometer, which tends to reduce the occurrence of blow back of the flowable material from the portion of the exhaust system that is downstream from the vane anemometer, and which is at a relatively lower pressure, to the portion of the exhaust system that is upstream from the vane anemometer, and which is at a relatively higher pressure, and which is where the substrate is processed.
Abstract:
A manufacturing process of Christmas tree decorations where glass half-products are first blown to required dimensions and shapes, including the process stem. This glass half-product is fixed into the rack and placed into the metal-coating device where, under vacuum conditions, a thin (1 to 7 microns) layer of metals and/or their alloys is coated on its surface by vacuum plating or vacuum powder coating processes. The metal-coated surfaces created this way may be finished in various colors using clear and color varnishes either gloss or matt. The glass half-products for Christmas tree decorations may be provided with shading in the place of intended decor before the half-product is put into the vacuum metal-coating device. After the shading elements are removed, clear non-coated spots are created on the decoration surfaces. The rack accommodating the glass half-products of decorations is for their placement into the metal-coating device when above methods are performed.
Abstract:
A substrate processing pallet has a top surface and a plurality of side surfaces. The top surface has at least one recess adapted to receive a substrate. The recess includes a support structure adapted to contact a portion of a substrate seated in the recess and a plurality of apertures each adapted to accommodate a lift pin. Lift pins can extend through the apertures initially to support the substrate and retract to deposit the substrate onto the support structure. A side surface includes a process positioning feature adapted to engage with a feature located in a process chamber to position the pallet. A side surface includes a positioning feature adapted to engage with an end effector alignment feature to position the pallet with respect to the end effector during transport. A side surface includes support features adapted to engage with end effector support features to support the pallet during transport.
Abstract:
Coating installation and method for disk-shaped workpieces having a transport chamber (3) with a workpiece transport configuration (11) and at least two linearly extendable and retractable transport rams (15) driven under control and connected to a rotational axis (A) that is also driven under control. The rams are within shell lines of a rotation body about the rotational axis (A) and can be extended and retracted in the same direction with respect to a direction on the rotational axis. A workpiece receiver (17) is at the ends of each ram (15) and at least two operating openings (19B, 19S) by which the transport chamber (3) communicates with stations (21, 23) are provided, of which one is a coating station and wherein the surface normals (N) of the operating openings are in the direction of shell lines of the rotation body. A pump unit (34) communicates via a pump opening (30) with the transport chamber (3) as well as for the coating station (21). At least one of the rams (15) has, at its end, a closure configuration (17) or can be equipped with one, orientable toward the pump opening and the closure configuration, and, with orientation of the ram (15) onto the pump opening (30) and subsequently its extension (F), enters into an operational connection forming a sealed closure.
Abstract:
In order to produce a tank for accommodating a fluid used for the surface treatment of work pieces, especially vehicle bodies, wherein the fluid accommodated in the tank can be kept free of dirt particles with little outlay, it is proposed that the tank comprise dirt collecting compartments which are arranged in the base region of the tank.
Abstract:
A lift and rotate assembly for use in a workpiece processing station. The lift and rotate assembly includes a body having a slim profile and pins located on opposite sides for mounting the assembly onto a tool frame. The lift and rotate assembly is removably and pivotally mounted to an exposed outer surface of the frame. The lift and rotate assembly has a body, a process head movably connected to the body, and control components mounted within the body and configured to move the process head relative to the body. The lift and rotate assembly in one embodiment is positionable in a forward, operating position with the body adjacent to the frame, and in a tilted, service position with the body tilted away from the frame.