Abstract:
In an improved process for hydroformylation of olefinically unsaturated compounds using a catalyst based on cobalt and/or rhodium employed in a two-phase medium, a catalyst based on cobalt and/or rhodium is used dissolved in a non-aqueous ionic solvent which is liquid at a temperature of less than 90° C., in which the aldehydes formed are slightly soluble or insoluble. More particularly, the catalyst comprises at least one complex of cobalt and/or rhodium co-ordinated with at least one nitrogen-containing ligand and the non-aqueous ionic solvent comprises at least one quaternary ammonium and/or phosphonium cation and at least one inorganic anion. At the end of the reaction, the organic phase is generally separated and the ionic non-aqueous solvent phase containing the catalyst can be re-used.
Abstract:
This invention relates to a process for the catalytic hydroformylation of olefins by reaction of an olefin with hydrogen and carbon monoxide in a liquid, aqueous-organic reaction medium in the presence of a water-soluble hydroformylation catalyst, characterized in that for a substantial period of the hydroformylation reaction, the aqueous-organic medium is present in the form of a microemulsion, which is made up of an oil phase containing the olefin or the olefin and its hydroformylation products, an aqueous phase containing the water-soluble complex catalyst, and a nonionic surfactant.
Abstract:
In a process for preparing aldehydes and/or alcohols having from 6 to 30 carbon atoms by hydroformylation of olefins by means of synthesis gas in the presence of a catalyst at from 120° C. to 210° C. and pressures of from 100 to 400 bar, a reaction mixture comprising olefins, synthesis gas and catalyst or catalyst precursor is, according to the present invention, introduced at high velocity into a high-pressure reactor via a nozzle having an adjustable flow cross section.
Abstract:
In a process for hydroformylation of olefinically unsaturated compounds using a catalyst based on cobalt and/or rhodium co-ordinated by at least one ligand selected from the group formed by nitrogen-containing or phosphorus-containing ligands used in a non-aqueous ionic solvent, which catalyst is liquid at a temperature of less than 90° C., in which the aldehydes formed are not or are only slightly soluble and which comprises at least one quaternary ammonium and/or phosphonium cation Q+ and at least one anion A−, the improvement of the invention consists in that in the cobalt and/or rhodium complex, the ligand also carries an ionic function (Q′)+(A′)− where Q and Q′ and/or A and A′ are chemically identical.
Abstract:
The present invention relates to methods for producing chiral aldehydes by the enantioselective hydroformylation of prochiral substrates with the aid of a catalyst consisting of a transition metal and a chiral ligand, characterized in that said chiral ligand is a compound of general formula 1 wherein the rings R7-R10 drawn with dotted lines are optional and one or more of rings R1-R6 or R7-R10 are substituted with one or more independently selected substituents of general formula —(CH2)x(CF2)yF(x=0-5; y=1-12) or their branched isomers. In particular, the invention relates to the conducting of the mentioned methods in compressed (liquid or supercritical) carbon dioxide as the reaction medium.
Abstract:
A method of producing tricyclodecane dicarbaldehyde and/or pentacyclopentadecane dicarbaldehyde by the hydroformylation of dicyclopentadiene and/or tricyclopentadiene. The tricyclodecane dicarbaldehyde and/or pentacyclopentadecane dicarbaldehyde in the hydroformylation product liquid are extracted with an extraction solvent comprising a polyhydric alcohol having 2 to 6 carbon atoms. With such extraction, the tricyclodecane dicarbaldehyde and/or pentacyclopentadecane dicarbaldehyde transfer into the extraction solvent while retaining the catalyst components in the hydroformylation solvent. The controlled extraction atmosphere with an oxygen concentration of 1000 ppm or lower prevents the rhodium compound from transferring into the extraction solvent, thereby avoiding the loss of expensive rhodium. The extraction solvent containing tricyclodecane dicarbaldehyde and/or pentacyclopentadecane dicarbaldehyde as such can be directly subjected to catalytic hydrogenation to produce corresponding tricyclodecane dimethanol and/or pentacyclopentadecane dimethanol.
Abstract:
This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, in which said reaction product fluid exhibits phase behavior depicted by FIG. 1, wherein said process comprises (1) supplying said reaction product fluid from a reaction zone to a separation zone, (2) controlling concentration of said one or more nonpolar reaction solvents and said one or more polar reaction solvents, temperature and pressure in said separation zone sufficient to obtain by phase separation two immiscible liquid phases depicted by regions 2, 4 and 6 of FIG. 1 comprising a polar phase and a nonpolar phase and to prevent or minimize formation of three immiscible liquid phases depicted by region 5 of FIG. 1 and one homogeneous liquid phase depicted by regions 1, 3 and 7 of FIG. 1, and (3) recovering said polar phase from said nonpolar phase or said nonpolar phase from said polar phase.
Abstract:
This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophoshorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a nonpolar solvent and a polar solvent by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5 (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.5, and (iii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more reaction byproducts is expressed by a partition coefficient ratio Ef3 which is a value greater than about 2.5.
Abstract:
The present invention provides an improved hydroformylation process in which the catalyst system is composed of a Group VIII metal and organic phosphite ligand having the structure P(OR)2-OR′O—P(OR)2 or P(OR)3, where R and R′ are organic residues which may be the same or different and where the R or R′ contain at least one C9 to C40 aliphatic group positioned as a tail extending away from the primary ligand structure rendering the ligand lipophilic.
Abstract:
A composition and a process for using the composition in hydroformylation of unsaturated organic compounds are disclosed. The composition comprises a Group VIII metal and a phosphite-containing polymer having repeat units derived from (1) a carbonyl compound, a monomer, and phosphochloridite; (2) phosphorus trichloride, a polyhydric alcohol, and an aromatic diol; or (3) combinations of (1) and (2). The process comprises contacting an unsaturated compound, in the presence of the composition disclosed herein, with a fluid comprising hydrogen.