Abstract:
The present disclosure relates to a method of constructing a liquefied gas storage tank on land, which enables rapid and easy construction of walls of a cylindrical storage tank by stacking a plurality of pre-produced unit-wall structures to be stacked or superposed with respect to one another. The method includes: producing unit-wall structures made of concrete and each having iron rods arranged lengthwise and breadthwise therein, stacking the unit-wall structures in a cylindrical arrangement, and connecting the unit-wall structures adjacent and in longitudinal and lateral directions with respect to each other to form a wall of the storage tank.
Abstract:
In various embodiments, lined underground reservoirs and/or insulated pipeline vessels are utilized for storage of compressed fluid in conjunction with energy storage and recovery systems.
Abstract:
A sealed and insulating tank, notably for liquefied natural gas, includes, a supporting wall with anchor members disposed in a repeated pattern, a sealing barrier in contact with a product contained in the tank and a thermal insulation barrier disposed between the sealing barrier and the supporting wall, the thermal insulation barrier including a plurality of insulating panels disposed in the repeated pattern, each insulating panel being fixed to the supporting wall by an adhesive disposed on a lower surface of the insulating panel and one or more anchor members of the supporting wall each cooperating with a hole passing through the insulating panel. The number of anchor members per insulating panel is in the range 1 to 6, preferably 2 to 3. A method of fixing insulating panels employs a clamping tool.
Abstract:
These inventions related to systems and methods for producing, shipping, distributing, and storing hydrogen. In one embodiment, a hydrogen production and storage system includes a plurality of wind turbines for generating electrical power; a power distribution control system for distributing, and converting the electrical power from the wind turbines, a water desalination and/or purification unit which receives and purifies seawater, and an electrolyzer unit that receive electrical power from the power distribution system and purified water from the desalination units and thereby converts the water into hydrogen and oxygen. After its production, hydrogen is stored, transported, and distributed in accordance with various embodiments.
Abstract:
A method for producing pressurized liquefied natural gas and a production system therefor are provided. The method for producing pressurized liquefied natural gas includes: performing a dehydration process to remove water from natural gas supplied from a natural gas field, without a process of removing acid gas from the natural gas; and performing a liquefaction process to produce pressurized liquefied natural gas by liquefying the natural gas, which has undergone the dehydration process, at a pressure of 13 to 25 bar and a temperature of −120 to −95° C., without a process of fractionating natural gas liquid (NGL). Accordingly, it is possible to reduce plant construction costs and maintenance expenses and reduce LNG production costs. In addition, it is possible to guarantee high economic profit and reduce payback period in small and medium-sized gas fields, from which economic feasibility could not be ensured by the use of a conventional method.
Abstract:
A method for processing a dry gas into a liquefied natural gas and offloading the liquefied natural gas, wherein the method can include using a connecting device to: attach and hold the transport vessel to the floating liquefaction vessel, and enabling an inner walkway to extend and retract from an outer walkway of the connecting device to accommodate for motions. The method can include receiving and cooling dry gas to form liquefied natural gas for transfer to the transport vessel. The method can include transferring personnel and equipment within walkway on the connecting device. The method can include using a transport vessel controller to continuously monitor receipt, storage, and offloading of the liquefied natural gas. The method can include dynamically positioning the transport vessel in proximity to the floating liquefaction vessel using computer instructions and motions measured by sensors or the like.
Abstract:
A floating liquefaction vessel and connecting device system for receiving a dry gas, forming a liquefied natural gas, and offloading the liquefied natural gas, wherein the system can include a floating liquefaction vessel for receiving the dry gas, cooling the dry gas to form liquefied natural gas, flowing the liquefied natural to a transport vessel, and receiving a hydrocarbon vapor from the transport vessel. A floating liquefaction vessel controller can monitor offloading of the liquefied natural gas. A connecting device can connect the transport vessel to the floating liquefaction vessel. The connecting device can include an inner walkway telescopically contained within an outer walkway and configured to extend and retract from the outer walkway in response to motions.
Abstract:
A barrier sheet for an LNG cargo tank includes a first barrier sheet so as to form a secondary barrier of the cargo tank and a second barrier sheet attached on the first barrier sheet. Each of the first and second sheets includes first and second metal layers and a glass cloth layer interposed between the first and second layers and bonded to the first and second metal layers.
Abstract:
An economical system provides gaseous hydrocarbon to numerous locations (16, 18) that are each in the vicinity of an ocean coast, such as islands in a developing country, so the coastal inhabitants have access to low cost, easily supplied by pipeline and clean-burning natural gas. The system includes a local supply station (24), or hub, that stores natural gas, as by receiving LNG (liquefied natural gas) that has been liquefied by cooling it to −160° C., from a large tanker (20) having a storage capacity of over 50 million standard cubic feet of natural gas. Shuttle boats (40) that each has a much smaller LNG storage capacity than the tanker, load LNG from the local supply station, carry it to one of a plurality of local coastal stations (12, 14), heat the LNG to produce gaseous hydrocarbons, and transfer the gaseous hydrocarbons to an offshore receiving facility of the local coastal station. The gaseous hydrocarbons are then used by the local coastal station as to distribute gaseous hydrocarbons to residents of the island or to fuel an electricity generating plant.
Abstract:
An LNG system generally comprises a primary container, and a secondary container positioned around the primary container. The secondary container generally comprises a first end wall, a second end wall, and at least two side walls. At least one of the walls is fabricated from a plurality of prefabricated wall panels. Each of the wall panels is fabricated from a combination of concrete and steel. The wall panels are preferably prefabricated offsite, and then transported to the construction site where they are adjoined together in end-to-end fashion to form walls. A method for constructing a full containment LNG system is also provided. In one embodiment, walls and a roof for a secondary container are assembled, but leaving an end open. At least one primary tank is brought into the secondary container. A second end wall is then erected to form the enclosure for the secondary container.