Abstract:
The present invention provides a method for making metal parts from metal powder compositions comprising an iron base metal powder and an amide lubricant. The method comprises the steps of compacting said composition, pre-sintering the compacted composition, compacting the compacted and pre-sintered composition, and sintering the recompacted composition. The metal parts have improved physical and mechanical properties.
Abstract:
A method of preparing a magnet powder, and a magnet powder, are disclosed. The method includes: preparing a neodymium praseodymium (Nd, Pr) mixed oxide containing Nd and Pr; preparing iron (Fe) oxide; preparing boron (B) oxide; mixing the prepared (Nd, Pr) mixed oxide, iron oxide, and boron oxide to prepare a first mixture; mixing the first mixture with calcium (Ca) to prepare a second mixture; inducing diffusion while shaping and pressing the second mixture; reducing the shaped and pressed second mixture to prepare a magnetic substance containing Nd, Fe, and B; powdering the reduced magnetic substance; and removing reduction by-products from the powdered magnetic substance.
Abstract:
In various embodiments, metallic alloy powders are formed at least in part by spray drying to form agglomerate particles and/or plasma densification to form composite particles.
Abstract:
An insulating material-coated soft magnetic powder includes: a core particle that includes a base portion containing a soft magnetic material containing Fe as a main component and at least one of Si, Cr, and Al, and that includes an oxide film provided on a surface of the base portion and containing an oxide of at least one of Si, Cr, and Al; and an insulating film that is provided on a surface of the core particle and that contains a ceramic, in which a thickness of the insulating film is 5 nm or more and 300 nm or less, and the oxide contained in the oxide film and the ceramic contained in the insulating film are mutually diffused at an interface between the oxide film and the insulating film.
Abstract:
In various embodiments, metallic alloy powders are formed at least in part by spray drying to form agglomerate particles and/or plasma densification to form composite particles.
Abstract:
A soft magnetic powder according to the present disclosure comprises a particle having no hollow part as a main component, wherein a number of hollow particle present in a region of 2.5 mm square is 40 or less in a cross section of a molded body obtained by powder-compacting and molding the soft magnetic powder so as to have a volume filling rate of 75% or more and 77% or less (i.e., from 75% to 77%).
Abstract:
A casting insert includes a casting insert wall formed substantially of a liquid-phase-sintered refractory metal alloy, a cavity formed by the casting insert wall, and at least one cooling duct, which is different from the cavity and which is formed at least partly within the cavity and/or which is formed at least partly within the casting insert wall. The casting insert wall has a wall thickness which can be defined as a normal distance between a point of the casting insert wall which faces the cavity and a point on an outer surface of the casting insert wall. The wall thickness is, at least in sections, less than 25% of a diameter of the casting insert.
Abstract:
A process for producing R-T-B-based rare earth magnet powder having excellent coercive force and high remanent flux density. A process for producing R-T-B-based rare earth magnet powder by HDDR treatment, in which a raw material alloy for the R-T-B-based rare earth magnet powder includes R (wherein R represents at least one rare earth element including Y), T (wherein T represents Fe, or Fe and Co) and B (wherein B represents boron), and has a composition including R in an amount of between 12.0 atom % and 17.0 atom %, and B in an amount of between 4.5 atom % and 7.5 atom %; the HDDR treatment includes a DR step including a preliminary evacuation step and a complete evacuation step; and a rate of pressure reduction caused by evacuation in the preliminary evacuation step is not less than 1 kPa/min and not more than 30 kPa/min.
Abstract:
A production apparatus and method for fine particles are capable of increasing a production amount and producing fine particles at low cost by efficiently inputting a large amount of material to plasma. The production apparatus includes a material supply device, which includes a plurality of material supply ports that supply a material gas containing material particles and are arranged below a plurality of electrodes in a vertical direction inside a vacuum chamber. The material supply device further includes a first gas supply port that supplies a first shield gas arranged in an inner periphery of the plural material supply ports and plural second gas supply ports that supply a second shield gas arranged in an outer periphery of the plural material supply ports.