Abstract:
An arrangement to set up and to ensure an air gap in an electrical machine, like a generator, is provided. The electrical machine includes a stator arrangement and a rotor arrangement. The rotor-arrangement rotates around a longitudinal axis. At least parts of the rotor arrangement interact with parts of the stator arrangement to generate electrical power. An air gap is defined by the distance between the parts of the rotor arrangement and the parts of the stator arrangement. The parts of the stator arrangement are opposite to the parts of the rotor arrangement along a certain length. The cross-section of the air gap changes along the certain length, so that the air gap is not uniform in view to the referred certain length.
Abstract:
A deflection resistant wind turbine generator having a stator arranged about an axis and a rotor operably mounted with respect to the stator to generate electricity. The rotor is rotatably communicating with wind turbine blades rotating substantially about the axis and the rotor and the stator are configured to maintain an airgap therebetween. The stator and the rotor have selectively engageable surfaces that maintain a substantially stable airgap and permit rotation of the rotor during engagement. The engageable surfaces engage when the rotor deflects to a predetermined amount of deflection.
Abstract:
A machine includes a moving part and a direct drive for moving the moving part. The direct drive includes a stator and an armature unit which interacts with the stator. A coupling device couples the armature unit to the moving part to allow a movement of the moving part in relation to the armature unit. The direct drive further includes a spacer device to maintain a distance between an active region of the stator and an active region of the armature unit, thereby defining the air gap between the stator and the armature unit.
Abstract:
A wind driven turbine includes a perimeter rim that carries a rotor, and a stator is positioned at the annular path of the rotor with field coils positioned on opposite sides of the rotor that generate electricity in response to the rotation of the rotor. A proximity gauging means selectively maintains the field coils at predetermined distances from the rotor. The wind turbine may be mounted on a floatable support.
Abstract:
A linear motor is provided with a stator, a slider disposed to be movable relatively with respect to the stator with a gap, and a non-magnetic plate mounted to either one of the stator and the slider so as to define the gap between the stator and the slider.
Abstract:
A wind turbine is provided. The wind turbine includes a direct drive generator with a stator arrangement, a rotor arrangement substantially arranged around the stator arrangement and a longitudinal centre axis. The stator arrangement includes a stator support structure, which includes at least one substantially radial extending stator support element. The stator support element is attached to a substantially parallel to the centre axis extending stationary shaft, is substantially rigid in the radial direction and is at least partially in a certain extent flexible in the directions of the centre axis of the generator.
Abstract:
A torquer apparatus generally comprises a reaction-gyro sphere consisting of a concentric assembly of a substantially spherical rotor and a substantially spherical stator. This is implemented in the present invention as a rotor with magnetic poles such that, when radially projected on a concentric octahedron, the same symmetrical pattern is obtained on all faces of said octahedron, the polarity of the poles projected on two adjacent faces of said octahedron being opposite and a stator with at least twenty poles magnetized with coils and such that, when radially projected on a concentric icosahedron, the same symmetrical pattern is obtained on all faces of said icosahedron, said stator being-in nominal position-concentric with said rotor. Real-time measurements, or equivalent information, of the position of the rotor with respect to the stator are obtained together with exported torque from the stator, or the orientation of the rotor with respect to the stator. A controller controls the current in the coils of the stator poles based on said measurements, or said equivalent information, such that the rotor is magnetically held in said nominal position, and that the desired torque is exported.
Abstract:
In a linear motor (1) having a stator (2) and an armature (3), the stator (2) comprises a winding former (21) and a drive winding (22) provided on the winding former (21). Further, means are provided for preventing any contact between the drive winding (22) and the armature (3) in case the armature (3) penetrates through the winding former (21).
Abstract:
A generator for a wind turbine including a rotor arrangement and a stator arrangement is provided. The rotor arrangement includes a cylinder barrel or a sleeve enclosing a rotor element provided for the production of energy and having an outer cylinder barrel shaped surface in relation to a centre axis of the generator acting as a bearing surface of the rotor arrangement. The stator arrangement includes a cylinder barrel or a sleeve covering a stator element provided for the production of energy and having an inner cylinder barrel shaped surface in relation to the centre axis of the generator acting as a bearing surface of the stator arrangement. The bearing surfaces of the rotor arrangement and the stator arrangement are arranged oppositely to each other with a substantially cylinder barrel shaped air gap in-between, wherein the air gap comprises a lubricant. Also, a wind turbine including a generator is provided.
Abstract:
A permanent magnet rotating electric machine comprises a stator having stator windings wound round a stator iron core and a permanent magnet rotor having a plurality of inserted permanent magnets in which the polarity is alternately arranged in the peripheral direction in the rotor iron core. The rotor iron core of the permanent magnets is composed of magnetic pole pieces, auxiliary magnetic poles, and a stator yoke, and furthermore has concavities formed on the air gap face of the magnetic pole pieces of the rotor iron core of the permanent magnets, gently tilting from the central part of the magnetic poles to the end thereof. In a permanent magnet rotating electric machine, effects of iron loss are reduced, and an electric car using highly efficient permanent magnet rotating electric machine are realized.